Constructive Approximation最新文献

筛选
英文 中文
Bounds on Orthonormal Polynomials for Restricted Measures 受限度量正交多项式的界限
IF 2.7 2区 数学
Constructive Approximation Pub Date : 2023-12-18 DOI: 10.1007/s00365-023-09671-z
D. S. Lubinsky
{"title":"Bounds on Orthonormal Polynomials for Restricted Measures","authors":"D. S. Lubinsky","doi":"10.1007/s00365-023-09671-z","DOIUrl":"https://doi.org/10.1007/s00365-023-09671-z","url":null,"abstract":"<p>Suppose that <span>(nu )</span> is a given positive measure on <span>(left[ -1,1right] )</span>, and that <span>(mu )</span> is another measure on the real line, whose restriction to <span>( left( -1,1right) )</span> is <span>(nu )</span>. We show that one can bound the orthonormal polynomials <span>(p_{n}left( mu ,yright) )</span> for <span>(mu )</span> and <span>(yin mathbb {R})</span>, by the supremum of <span>(left| S_{J}left( yright) p_{n-J}left( S_{J}^{2}nu ,yright) right| )</span>, where the sup is taken over all <span>(0le Jle n)</span> and all monic polynomials <span>(S_{J})</span> of degree <i>J</i> with zeros in an appropriate set.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotone Discretization of Anisotropic Differential Operators Using Voronoi’s First Reduction 各向异性微分算子的Voronoi一阶约化单调离散化
IF 2.7 2区 数学
Constructive Approximation Pub Date : 2023-12-01 DOI: 10.1007/s00365-023-09672-y
Frédéric Bonnans, Guillaume Bonnet, Jean-Marie Mirebeau
{"title":"Monotone Discretization of Anisotropic Differential Operators Using Voronoi’s First Reduction","authors":"Frédéric Bonnans, Guillaume Bonnet, Jean-Marie Mirebeau","doi":"10.1007/s00365-023-09672-y","DOIUrl":"https://doi.org/10.1007/s00365-023-09672-y","url":null,"abstract":"<p>We consider monotone discretization schemes, using adaptive finite differences on Cartesian grids, of partial differential operators depending on a strongly anisotropic symmetric positive definite matrix. For concreteness, we focus on a linear anisotropic elliptic equation, but our approach extends to divergence form or non-divergence form diffusion, and to a variety of first and second order Hamilton–Jacobi–Bellman PDEs. The design of our discretization stencils relies on a matrix decomposition technique coming from the field of lattice geometry, and related to Voronoi’s reduction of positive quadratic forms. We show that it is efficiently computable numerically, in dimension up to four, and yields sparse and compact stencils. However, some of the properties of this decomposition, related with the regularity and the local connectivity of the numerical scheme stencils, are far from optimal. We thus present fixes and variants of the decomposition that address these defects, leading to stability and convergence results for the numerical schemes.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of the Lipschitz Summation Formula and a Generalization of Raabe’s Cosine Transform Lipschitz求和公式的应用及Raabe余弦变换的推广
2区 数学
Constructive Approximation Pub Date : 2023-10-24 DOI: 10.1007/s00365-023-09668-8
Atul Dixit, Rahul Kumar
{"title":"Applications of the Lipschitz Summation Formula and a Generalization of Raabe’s Cosine Transform","authors":"Atul Dixit, Rahul Kumar","doi":"10.1007/s00365-023-09668-8","DOIUrl":"https://doi.org/10.1007/s00365-023-09668-8","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135219382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Polynomial Approximation on $$C^2$$-Domains $$C^2$$ -域的多项式近似
2区 数学
Constructive Approximation Pub Date : 2023-10-21 DOI: 10.1007/s00365-023-09669-7
Feng Dai, Andriy Prymak
{"title":"Polynomial Approximation on $$C^2$$-Domains","authors":"Feng Dai, Andriy Prymak","doi":"10.1007/s00365-023-09669-7","DOIUrl":"https://doi.org/10.1007/s00365-023-09669-7","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135511519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shrinking Schauder Frames and Their Associated Bases 收缩肖德框架及其相关基
2区 数学
Constructive Approximation Pub Date : 2023-10-17 DOI: 10.1007/s00365-023-09667-9
Kevin Beanland, Daniel Freeman
{"title":"Shrinking Schauder Frames and Their Associated Bases","authors":"Kevin Beanland, Daniel Freeman","doi":"10.1007/s00365-023-09667-9","DOIUrl":"https://doi.org/10.1007/s00365-023-09667-9","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stable Gabor Phase Retrieval in Gaussian Shift-Invariant Spaces via Biorthogonality 基于双正交的高斯移不变空间稳定Gabor相位检索
2区 数学
Constructive Approximation Pub Date : 2023-10-04 DOI: 10.1007/s00365-023-09629-1
Philipp Grohs, Lukas Liehr
{"title":"Stable Gabor Phase Retrieval in Gaussian Shift-Invariant Spaces via Biorthogonality","authors":"Philipp Grohs, Lukas Liehr","doi":"10.1007/s00365-023-09629-1","DOIUrl":"https://doi.org/10.1007/s00365-023-09629-1","url":null,"abstract":"Abstract We study the phase reconstruction of signals f belonging to complex Gaussian shift-invariant spaces $$V^infty (varphi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> from spectrogram measurements $$|{mathcal {G}} f(X)|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>G</mml:mi> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> where $${mathcal {G}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>G</mml:mi> </mml:math> is the Gabor transform and $$X subseteq {{mathbb {R}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> . An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on | f | result in stability estimates in the situation where one aims to reconstruct f on compacts intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements (Grohs and Liehr in Injectivity of Gabor phase retrieval from lattice measurements. Appl. Comput. Harmon. Anal. 62, 173–193 (2023)) we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $$V^infty (varphi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , such as Paley–Wiener spaces.","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The WCGA in $$L^p(log L)^{alpha }$$ Spaces WCGA在$$L^p(log L)^{alpha }$$空间
IF 2.7 2区 数学
Constructive Approximation Pub Date : 2023-07-25 DOI: 10.1007/s00365-023-09664-y
G. Garrigós
{"title":"The WCGA in $$L^p(log L)^{alpha }$$ Spaces","authors":"G. Garrigós","doi":"10.1007/s00365-023-09664-y","DOIUrl":"https://doi.org/10.1007/s00365-023-09664-y","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48554265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulated Bi-Orthogonal Polynomials on the Unit Circle: The 2j-kdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2j-k$$ 单位圆上的调制双正交多项式:2j-kdocumentclass[12pt]{minimum}usepackage{amsmath}usecpackage{wasysym}usepackup{amsfonts}usecpackage{amssymb}usecackage{amsbsy}usecPackage{mathrsfs}usecPack{upgeek}setlength{doddsidemargin}{-69pt} begin{document}$2j-k$$
IF 2.7 2区 数学
Constructive Approximation Pub Date : 2023-06-21 DOI: 10.1007/s00365-022-09604-2
R. Gharakhloo, Nicholas S. Witte
{"title":"Modulated Bi-Orthogonal Polynomials on the Unit Circle: The 2j-kdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2j-k$$","authors":"R. Gharakhloo, Nicholas S. Witte","doi":"10.1007/s00365-022-09604-2","DOIUrl":"https://doi.org/10.1007/s00365-022-09604-2","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49163230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rodrigues’ Descendants of a Polynomial and Boutroux Curves 多项式和Boutroux曲线的Rodrigues的后代
2区 数学
Constructive Approximation Pub Date : 2023-05-30 DOI: 10.1007/s00365-023-09657-x
Rikard Bøgvad, Christian Hägg, Boris Shapiro
{"title":"Rodrigues’ Descendants of a Polynomial and Boutroux Curves","authors":"Rikard Bøgvad, Christian Hägg, Boris Shapiro","doi":"10.1007/s00365-023-09657-x","DOIUrl":"https://doi.org/10.1007/s00365-023-09657-x","url":null,"abstract":"Abstract Motivated by the classical Rodrigues’ formula, we study below the root asymptotic of the polynomial sequence $$begin{aligned} {mathcal {R}}_{[alpha n],n,P}(z)=frac{mathop {}!textrm{d}^{[alpha n]}P^n(z)}{mathop {}!textrm{d}z^{[alpha n]}}, n= 0,1,dots end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:msup> <mml:mtext>d</mml:mtext> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mtext>d</mml:mtext> <mml:msup> <mml:mi>z</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where P ( z ) is a fixed univariate polynomial, $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> is a fixed positive number smaller than $$deg P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>deg</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> , and $$[alpha n]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> stands for the integer part of $$alpha n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> . Our description of this asymptotic is expressed in terms of an explicit harmonic function uniquely determined by the plane rational curve emerging from the application of the saddle point method to the integral representation of the latter polynomials using Cauchy’s formula for higher derivatives. As a consequence of our method, we conclude that this curve is birationally equivalent to the zero locus of the bivariate algebraic equation satisfied by the Cauchy transform of the asymptotic root-counting measure for the latter polynomial sequence. We show that this harmonic function is also associated with an abelian differential having only purely imaginary periods and the latter plane curve belongs to the class of Boutroux curves initially introduced in Bertola (Anal Math Phys 1: 167–211","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135478842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral Properties of Sierpinski Measures on $$mathbb {R}^n$$ $$mathbb{R}^n上Sierpinski测度的谱性质$$
IF 2.7 2区 数学
Constructive Approximation Pub Date : 2023-05-21 DOI: 10.1007/s00365-023-09654-0
X. Dai, Xiaoye Fu, Zhigang Yan
{"title":"Spectral Properties of Sierpinski Measures on $$mathbb {R}^n$$","authors":"X. Dai, Xiaoye Fu, Zhigang Yan","doi":"10.1007/s00365-023-09654-0","DOIUrl":"https://doi.org/10.1007/s00365-023-09654-0","url":null,"abstract":"","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45021574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信