基于双正交的高斯移不变空间稳定Gabor相位检索

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Philipp Grohs, Lukas Liehr
{"title":"基于双正交的高斯移不变空间稳定Gabor相位检索","authors":"Philipp Grohs, Lukas Liehr","doi":"10.1007/s00365-023-09629-1","DOIUrl":null,"url":null,"abstract":"Abstract We study the phase reconstruction of signals f belonging to complex Gaussian shift-invariant spaces $$V^\\infty (\\varphi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> from spectrogram measurements $$|{\\mathcal {G}} f(X)|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>G</mml:mi> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> where $${\\mathcal {G}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>G</mml:mi> </mml:math> is the Gabor transform and $$X \\subseteq {{\\mathbb {R}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> . An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on | f | result in stability estimates in the situation where one aims to reconstruct f on compacts intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements (Grohs and Liehr in Injectivity of Gabor phase retrieval from lattice measurements. Appl. Comput. Harmon. Anal. 62, 173–193 (2023)) we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $$V^\\infty (\\varphi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , such as Paley–Wiener spaces.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Stable Gabor Phase Retrieval in Gaussian Shift-Invariant Spaces via Biorthogonality\",\"authors\":\"Philipp Grohs, Lukas Liehr\",\"doi\":\"10.1007/s00365-023-09629-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the phase reconstruction of signals f belonging to complex Gaussian shift-invariant spaces $$V^\\\\infty (\\\\varphi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> from spectrogram measurements $$|{\\\\mathcal {G}} f(X)|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>G</mml:mi> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> where $${\\\\mathcal {G}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>G</mml:mi> </mml:math> is the Gabor transform and $$X \\\\subseteq {{\\\\mathbb {R}}}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> . An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on | f | result in stability estimates in the situation where one aims to reconstruct f on compacts intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements (Grohs and Liehr in Injectivity of Gabor phase retrieval from lattice measurements. Appl. Comput. Harmon. Anal. 62, 173–193 (2023)) we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $$V^\\\\infty (\\\\varphi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>φ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , such as Paley–Wiener spaces.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-023-09629-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00365-023-09629-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

摘要

研究了频谱图测量值$$|{\mathcal {G}} f(X)|$$ | gf (X) |中复高斯平移不变空间$$V^\infty (\varphi )$$ V∞(φ)信号f的相位重构,其中$${\mathcal {G}}$$ G为Gabor变换,$$X \subseteq {{\mathbb {R}}}^2$$ X R 2。一个显式的重建公式将证明,这种信号可以通过Riesz基展开从位于时频平面平行线上的测量中恢复。此外,对于在紧区间上重构f的情况,对f的连通性假设可以得到稳定性估计。最近的一项观察表明,高斯移不变空间中的信号是由晶格测量确定的(Grohs和Liehr在晶格测量的Gabor相位检索的注入性中)。苹果。计算。哈蒙。我们从有限多个谱图样本中证明了稳定近似的采样结果。所得到的算法提供了一种可证明的稳定和收敛的近似技术。此外,它还构成了在$$V^\infty (\varphi )$$ V∞(φ)以外的函数空间(如Paley-Wiener空间)中逼近信号的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable Gabor Phase Retrieval in Gaussian Shift-Invariant Spaces via Biorthogonality

Stable Gabor Phase Retrieval in Gaussian Shift-Invariant Spaces via Biorthogonality
Abstract We study the phase reconstruction of signals f belonging to complex Gaussian shift-invariant spaces $$V^\infty (\varphi )$$ V ( φ ) from spectrogram measurements $$|{\mathcal {G}} f(X)|$$ | G f ( X ) | where $${\mathcal {G}}$$ G is the Gabor transform and $$X \subseteq {{\mathbb {R}}}^2$$ X R 2 . An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on | f | result in stability estimates in the situation where one aims to reconstruct f on compacts intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements (Grohs and Liehr in Injectivity of Gabor phase retrieval from lattice measurements. Appl. Comput. Harmon. Anal. 62, 173–193 (2023)) we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $$V^\infty (\varphi )$$ V ( φ ) , such as Paley–Wiener spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信