Bounds on Orthonormal Polynomials for Restricted Measures

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. S. Lubinsky
{"title":"Bounds on Orthonormal Polynomials for Restricted Measures","authors":"D. S. Lubinsky","doi":"10.1007/s00365-023-09671-z","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span>\\(\\nu \\)</span> is a given positive measure on <span>\\(\\left[ -1,1\\right] \\)</span>, and that <span>\\(\\mu \\)</span> is another measure on the real line, whose restriction to <span>\\( \\left( -1,1\\right) \\)</span> is <span>\\(\\nu \\)</span>. We show that one can bound the orthonormal polynomials <span>\\(p_{n}\\left( \\mu ,y\\right) \\)</span> for <span>\\(\\mu \\)</span> and <span>\\(y\\in \\mathbb {R}\\)</span>, by the supremum of <span>\\(\\left| S_{J}\\left( y\\right) p_{n-J}\\left( S_{J}^{2}\\nu ,y\\right) \\right| \\)</span>, where the sup is taken over all <span>\\(0\\le J\\le n\\)</span> and all monic polynomials <span>\\(S_{J}\\)</span> of degree <i>J</i> with zeros in an appropriate set.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09671-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that \(\nu \) is a given positive measure on \(\left[ -1,1\right] \), and that \(\mu \) is another measure on the real line, whose restriction to \( \left( -1,1\right) \) is \(\nu \). We show that one can bound the orthonormal polynomials \(p_{n}\left( \mu ,y\right) \) for \(\mu \) and \(y\in \mathbb {R}\), by the supremum of \(\left| S_{J}\left( y\right) p_{n-J}\left( S_{J}^{2}\nu ,y\right) \right| \), where the sup is taken over all \(0\le J\le n\) and all monic polynomials \(S_{J}\) of degree J with zeros in an appropriate set.

受限度量正交多项式的界限
假设\(\nu \)是\(\left[-1,1\right] \)上的一个给定的正量度,并且\(\mu \)是实线上的另一个量度,它对\(\left( -1,1\right)\)的限制是\(\nu \)。我们证明,对于 \(\mu \) 和 \(yin \mathbb {R}\),我们可以通过 \(\left| S_{J}\left( y\right) p_{n-J}\left( S_{J}^{2}\nu 、y\right) \right|\),其中 sup 取自所有 \(0\le J\le n\) 和所有度数为 J 的单项式 \(S_{J}\),其零点在一个适当的集合中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信