Complete Minimal Logarithmic Energy Asymptotics for Points in a Compact Interval: A Consequence of the Discriminant of Jacobi Polynomials

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. S. Brauchart
{"title":"Complete Minimal Logarithmic Energy Asymptotics for Points in a Compact Interval: A Consequence of the Discriminant of Jacobi Polynomials","authors":"J. S. Brauchart","doi":"10.1007/s00365-023-09673-x","DOIUrl":null,"url":null,"abstract":"<p>The electrostatic interpretation of zeros of Jacobi polynomials, due to Stieltjes and Schur, enables us to obtain the complete asymptotic expansion as <span>\\(n \\rightarrow \\infty \\)</span> of the minimal logarithmic potential energy of <i>n</i> point charges restricted to move in the interval <span>\\([-1,1]\\)</span> in the presence of an external field generated by endpoint charges. By the same methods, we determine the complete asymptotic expansion as <span>\\(N \\rightarrow \\infty \\)</span> of the logarithmic energy <span>\\(\\sum _{j\\ne k} \\log (1/| x_j - x_k |)\\)</span> of Fekete points, which, by definition, maximize the product of all mutual distances <span>\\(\\prod _{j\\ne k} | x_j - x_k |\\)</span> of <i>N</i> points in <span>\\([-1,1]\\)</span>. The results for other compact intervals differ only in the quadratic and linear term of the asymptotics. Explicit formulas and their asymptotics follow from the discriminant, leading coefficient, and special values at <span>\\(\\pm 1\\)</span> of Jacobi polynomials. For all these quantities we derive complete Poincaré-type asymptotics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09673-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrostatic interpretation of zeros of Jacobi polynomials, due to Stieltjes and Schur, enables us to obtain the complete asymptotic expansion as \(n \rightarrow \infty \) of the minimal logarithmic potential energy of n point charges restricted to move in the interval \([-1,1]\) in the presence of an external field generated by endpoint charges. By the same methods, we determine the complete asymptotic expansion as \(N \rightarrow \infty \) of the logarithmic energy \(\sum _{j\ne k} \log (1/| x_j - x_k |)\) of Fekete points, which, by definition, maximize the product of all mutual distances \(\prod _{j\ne k} | x_j - x_k |\) of N points in \([-1,1]\). The results for other compact intervals differ only in the quadratic and linear term of the asymptotics. Explicit formulas and their asymptotics follow from the discriminant, leading coefficient, and special values at \(\pm 1\) of Jacobi polynomials. For all these quantities we derive complete Poincaré-type asymptotics.

紧凑区间内点的完全最小对数能量渐近线:雅可比多项式判别式的后果
由于斯蒂尔杰斯(Stieltjes)和舒尔(Schur)对雅可比多项式零点的静电解释,我们能够得到在端点电荷产生的外部场存在的情况下,限制在区间([-1,1])内移动的n个点电荷的最小对数势能的完整渐近展开为(n \rightarrow \infty \)。通过同样的方法,我们确定了对数势能的完全渐近展开(N \rightarrow \infty \)。\Fekete点的对数能量(log (1/| x_j - x_k|)),顾名思义,它最大化了N个点在([-1,1])中所有相互距离的乘积(prod _{j\ne k} | x_j - x_k|)。其他紧凑区间的结果仅在渐近线的二次项和线性项上有所不同。根据雅可比多项式的判别式、前导系数和在\(\pm 1\) 处的特殊值,可以得出明确的公式及其渐近线。对于所有这些量,我们都得出了完整的波恩卡莱式渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信