Monotone Discretization of Anisotropic Differential Operators Using Voronoi’s First Reduction

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Frédéric Bonnans, Guillaume Bonnet, Jean-Marie Mirebeau
{"title":"Monotone Discretization of Anisotropic Differential Operators Using Voronoi’s First Reduction","authors":"Frédéric Bonnans, Guillaume Bonnet, Jean-Marie Mirebeau","doi":"10.1007/s00365-023-09672-y","DOIUrl":null,"url":null,"abstract":"<p>We consider monotone discretization schemes, using adaptive finite differences on Cartesian grids, of partial differential operators depending on a strongly anisotropic symmetric positive definite matrix. For concreteness, we focus on a linear anisotropic elliptic equation, but our approach extends to divergence form or non-divergence form diffusion, and to a variety of first and second order Hamilton–Jacobi–Bellman PDEs. The design of our discretization stencils relies on a matrix decomposition technique coming from the field of lattice geometry, and related to Voronoi’s reduction of positive quadratic forms. We show that it is efficiently computable numerically, in dimension up to four, and yields sparse and compact stencils. However, some of the properties of this decomposition, related with the regularity and the local connectivity of the numerical scheme stencils, are far from optimal. We thus present fixes and variants of the decomposition that address these defects, leading to stability and convergence results for the numerical schemes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09672-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider monotone discretization schemes, using adaptive finite differences on Cartesian grids, of partial differential operators depending on a strongly anisotropic symmetric positive definite matrix. For concreteness, we focus on a linear anisotropic elliptic equation, but our approach extends to divergence form or non-divergence form diffusion, and to a variety of first and second order Hamilton–Jacobi–Bellman PDEs. The design of our discretization stencils relies on a matrix decomposition technique coming from the field of lattice geometry, and related to Voronoi’s reduction of positive quadratic forms. We show that it is efficiently computable numerically, in dimension up to four, and yields sparse and compact stencils. However, some of the properties of this decomposition, related with the regularity and the local connectivity of the numerical scheme stencils, are far from optimal. We thus present fixes and variants of the decomposition that address these defects, leading to stability and convergence results for the numerical schemes.

Abstract Image

各向异性微分算子的Voronoi一阶约化单调离散化
我们考虑了依赖于强各向异性对称正定矩阵的偏微分算子在直角网格上的自适应有限差分单调离散化方案。具体而言,我们关注的是线性各向异性椭圆方程,但我们的方法扩展到发散形式或非发散形式扩散,以及各种一阶和二阶Hamilton-Jacobi-Bellman偏微分方程。我们的离散化模板的设计依赖于来自晶格几何领域的矩阵分解技术,并与Voronoi对正二次型的简化有关。我们证明了它是有效的数值计算,维数可达4,并产生稀疏和紧凑的模板。然而,这种分解的一些性质,与数值格式模板的正则性和局部连通性有关,远非最优。因此,我们提出了解决这些缺陷的分解的修复和变体,从而导致数值格式的稳定性和收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信