Rodrigues’ Descendants of a Polynomial and Boutroux Curves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rikard Bøgvad, Christian Hägg, Boris Shapiro
{"title":"Rodrigues’ Descendants of a Polynomial and Boutroux Curves","authors":"Rikard Bøgvad, Christian Hägg, Boris Shapiro","doi":"10.1007/s00365-023-09657-x","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the classical Rodrigues’ formula, we study below the root asymptotic of the polynomial sequence $$\\begin{aligned} {\\mathcal {R}}_{[\\alpha n],n,P}(z)=\\frac{\\mathop {}\\!\\textrm{d}^{[\\alpha n]}P^n(z)}{\\mathop {}\\!\\textrm{d}z^{[\\alpha n]}}, n= 0,1,\\dots \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:msup> <mml:mtext>d</mml:mtext> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mtext>d</mml:mtext> <mml:msup> <mml:mi>z</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where P ( z ) is a fixed univariate polynomial, $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> is a fixed positive number smaller than $$\\deg P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>deg</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> , and $$[\\alpha n]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> stands for the integer part of $$\\alpha n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> . Our description of this asymptotic is expressed in terms of an explicit harmonic function uniquely determined by the plane rational curve emerging from the application of the saddle point method to the integral representation of the latter polynomials using Cauchy’s formula for higher derivatives. As a consequence of our method, we conclude that this curve is birationally equivalent to the zero locus of the bivariate algebraic equation satisfied by the Cauchy transform of the asymptotic root-counting measure for the latter polynomial sequence. We show that this harmonic function is also associated with an abelian differential having only purely imaginary periods and the latter plane curve belongs to the class of Boutroux curves initially introduced in Bertola (Anal Math Phys 1: 167–211, 2011), Bertola and Mo (Adv Math 220(1): 154–218, 2009). As an additional relevant piece of information, we derive a linear ordinary differential equation satisfied by $$\\{{\\mathcal {R}}_{[\\alpha n],n,P}(z)\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> as well as higher derivatives of powers of more general functions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00365-023-09657-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Motivated by the classical Rodrigues’ formula, we study below the root asymptotic of the polynomial sequence $$\begin{aligned} {\mathcal {R}}_{[\alpha n],n,P}(z)=\frac{\mathop {}\!\textrm{d}^{[\alpha n]}P^n(z)}{\mathop {}\!\textrm{d}z^{[\alpha n]}}, n= 0,1,\dots \end{aligned}$$ R [ α n ] , n , P ( z ) = d [ α n ] P n ( z ) d z [ α n ] , n = 0 , 1 , where P ( z ) is a fixed univariate polynomial, $$\alpha $$ α is a fixed positive number smaller than $$\deg P$$ deg P , and $$[\alpha n]$$ [ α n ] stands for the integer part of $$\alpha n$$ α n . Our description of this asymptotic is expressed in terms of an explicit harmonic function uniquely determined by the plane rational curve emerging from the application of the saddle point method to the integral representation of the latter polynomials using Cauchy’s formula for higher derivatives. As a consequence of our method, we conclude that this curve is birationally equivalent to the zero locus of the bivariate algebraic equation satisfied by the Cauchy transform of the asymptotic root-counting measure for the latter polynomial sequence. We show that this harmonic function is also associated with an abelian differential having only purely imaginary periods and the latter plane curve belongs to the class of Boutroux curves initially introduced in Bertola (Anal Math Phys 1: 167–211, 2011), Bertola and Mo (Adv Math 220(1): 154–218, 2009). As an additional relevant piece of information, we derive a linear ordinary differential equation satisfied by $$\{{\mathcal {R}}_{[\alpha n],n,P}(z)\}$$ { R [ α n ] , n , P ( z ) } as well as higher derivatives of powers of more general functions.

Abstract Image

多项式和Boutroux曲线的Rodrigues的后代
受经典Rodrigues公式的启发,我们研究了多项式序列$$\begin{aligned} {\mathcal {R}}_{[\alpha n],n,P}(z)=\frac{\mathop {}\!\textrm{d}^{[\alpha n]}P^n(z)}{\mathop {}\!\textrm{d}z^{[\alpha n]}}, n= 0,1,\dots \end{aligned}$$ R [α n], n, P (z) = d [α n] P n (z) d z [α n], n = 0,1,⋯其中P (z)是一个固定的单变量多项式,$$\alpha $$ α是一个小于$$\deg P$$ deg P的固定正数,$$[\alpha n]$$ [α n]表示$$\alpha n$$ α n的整数部分。我们对这个渐近的描述是用一个显式调和函数来表示的,这个显式调和函数是由一个平面有理曲线唯一确定的,这个曲线是利用柯西高阶导数公式将鞍点法应用于后一阶多项式的积分表示而产生的。由于我们的方法,我们得出结论,这条曲线与后一个多项式序列的渐近根计数测度的柯西变换所满足的二元代数方程的零轨迹是双等效的。我们证明了这个调和函数也与只有纯虚周期的阿贝尔微分有关,后者的平面曲线属于Bertola (Anal Math Phys 1: 167-211, 2011), Bertola和Mo (Adv Math 220(1): 154-218, 2009)中最初引入的Boutroux曲线类。作为附加的相关信息,我们导出了一个线性常微分方程,由$$\{{\mathcal {R}}_{[\alpha n],n,P}(z)\}$$ R [α n], n, P (z){以及更一般函数的幂的高阶导数满足。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信