Current Opinion in Cell Biology最新文献

筛选
英文 中文
Spandrels of the cell nucleus 细胞核的边缘
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-23 DOI: 10.1016/j.ceb.2024.102421
Irina Solovei , Leonid Mirny
{"title":"Spandrels of the cell nucleus","authors":"Irina Solovei ,&nbsp;Leonid Mirny","doi":"10.1016/j.ceb.2024.102421","DOIUrl":"10.1016/j.ceb.2024.102421","url":null,"abstract":"<div><p>S.J. Gould and R. Lewontin in their famous “Spandrels paper” (1979) argued that many anatomical elements arise in evolution not due to their “current utility” but rather due to other “reasons for origin”, such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102421"},"PeriodicalIF":6.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001005/pdfft?md5=2a237edb5f70b9fe19f076d7d4fc1a68&pid=1-s2.0-S0955067424001005-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actin filament dynamics at barbed ends: New structures, new insights 有倒刺末端的肌动蛋白丝动力学:新结构、新见解
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-22 DOI: 10.1016/j.ceb.2024.102419
Naomi Courtemanche , Jessica L. Henty-Ridilla
{"title":"Actin filament dynamics at barbed ends: New structures, new insights","authors":"Naomi Courtemanche ,&nbsp;Jessica L. Henty-Ridilla","doi":"10.1016/j.ceb.2024.102419","DOIUrl":"10.1016/j.ceb.2024.102419","url":null,"abstract":"<div><p>The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102419"},"PeriodicalIF":6.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095506742400098X/pdfft?md5=535adbea4e8168c379b303820af44565&pid=1-s2.0-S095506742400098X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging methods and applications in 3D genomics 三维基因组学的新兴方法和应用
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-22 DOI: 10.1016/j.ceb.2024.102409
Simona Pedrotti , Ilaria Castiglioni , Cynthia Perez-Estrada , Linxuan Zhao , Jinxin Phaedo Chen , Nicola Crosetto , Magda Bienko
{"title":"Emerging methods and applications in 3D genomics","authors":"Simona Pedrotti ,&nbsp;Ilaria Castiglioni ,&nbsp;Cynthia Perez-Estrada ,&nbsp;Linxuan Zhao ,&nbsp;Jinxin Phaedo Chen ,&nbsp;Nicola Crosetto ,&nbsp;Magda Bienko","doi":"10.1016/j.ceb.2024.102409","DOIUrl":"10.1016/j.ceb.2024.102409","url":null,"abstract":"<div><p>Since the advent of Hi-C in 2009, a plethora of high-throughput sequencing methods have emerged to profile the three-dimensional (3D) organization of eukaryotic genomes, igniting the era of 3D genomics. In recent years, the genomic resolution achievable by these approaches has dramatically increased and several single-cell versions of Hi-C have been developed. Moreover, a new repertoire of tools not based on proximity ligation of digested chromatin has emerged, enabling the investigation of the higher-order organization of chromatin in the nucleus. In this review, we summarize the expanding portfolio of 3D genomic technologies, highlighting recent developments and applications from the past three years. Lastly, we present an outlook of where this technology-driven field might be headed.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102409"},"PeriodicalIF":6.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000887/pdfft?md5=e37e7e0bc546f6eb887016fed4287242&pid=1-s2.0-S0955067424000887-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell dynamics revealed by microscopy advances 显微镜技术的进步揭示了细胞动态
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-18 DOI: 10.1016/j.ceb.2024.102418
Max A. Hockenberry , Timothy A. Daugird , Wesley R. Legant
{"title":"Cell dynamics revealed by microscopy advances","authors":"Max A. Hockenberry ,&nbsp;Timothy A. Daugird ,&nbsp;Wesley R. Legant","doi":"10.1016/j.ceb.2024.102418","DOIUrl":"10.1016/j.ceb.2024.102418","url":null,"abstract":"<div><p>Cell biology emerges from spatiotemporally coordinated molecular processes. Recent advances in live-cell microscopy, fueled by a surge in optical, molecular, and computational technologies, have enabled dynamic observations from single molecules to whole organisms. Despite technological leaps, there is still an untapped opportunity to fully leverage their capabilities toward biological insight. We highlight how single-molecule imaging has transformed our understanding of biological processes, with a focus on chromatin organization and transcription in the nucleus. We describe how this was enabled by the close integration of new imaging techniques with analysis tools and discuss the challenges to make a comparable impact at larger scales from organelles to organisms. By highlighting recent successful examples, we describe an outlook of ever-increasing data and the need for seamless integration between dataset visualization and quantification to realize the full potential warranted by advances in new imaging technologies.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102418"},"PeriodicalIF":6.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein folding and quality control during nuclear transport 核运输过程中的蛋白质折叠和质量控制
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-13 DOI: 10.1016/j.ceb.2024.102407
Sunanda Mallik , Dylan Poch , Sophia Burick , Christian Schlieker
{"title":"Protein folding and quality control during nuclear transport","authors":"Sunanda Mallik ,&nbsp;Dylan Poch ,&nbsp;Sophia Burick ,&nbsp;Christian Schlieker","doi":"10.1016/j.ceb.2024.102407","DOIUrl":"10.1016/j.ceb.2024.102407","url":null,"abstract":"<div><p>The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102407"},"PeriodicalIF":6.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reorganizing chromatin by cellular deformation 通过细胞变形重组染色质
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-08 DOI: 10.1016/j.ceb.2024.102408
Sarthak Gupta , Maxx Swoger , Renita Saldanha , J.M. Schwarz , Alison E. Patteson
{"title":"Reorganizing chromatin by cellular deformation","authors":"Sarthak Gupta ,&nbsp;Maxx Swoger ,&nbsp;Renita Saldanha ,&nbsp;J.M. Schwarz ,&nbsp;Alison E. Patteson","doi":"10.1016/j.ceb.2024.102408","DOIUrl":"10.1016/j.ceb.2024.102408","url":null,"abstract":"<div><p>Biologists have the capability to edit a genome at the nanometer scale and then observe whether or not the edit affects the structure of a developing organ or organism at the centimeter scale. Our understanding of the underlying mechanisms driving this emergent phenomenon from a multiscale perspective remains incomplete. This review focuses predominantly on recent experimental developments in uncovering the mechanical interplay between the chromatin and cell scale since mechanics plays a major role in determining nuclear, cellular, and tissue structure. Here, we discuss the generation and transmission of forces through the cytoskeleton, affecting chromatin diffusivity and organization. Decoding such pieces of these multiscale connections lays the groundwork for solving the genotype-to-phenotype puzzle in biology.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102408"},"PeriodicalIF":6.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover 封底外侧
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-08-01 DOI: 10.1016/S0955-0674(24)00094-2
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S0955-0674(24)00094-2","DOIUrl":"10.1016/S0955-0674(24)00094-2","url":null,"abstract":"","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"89 ","pages":"Article 102415"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin remodeling and spatial concerns in DNA double-strand break repair DNA 双链断裂修复中的染色质重塑和空间问题。
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-07-30 DOI: 10.1016/j.ceb.2024.102405
Jessica A. Downs , Susan M. Gasser
{"title":"Chromatin remodeling and spatial concerns in DNA double-strand break repair","authors":"Jessica A. Downs ,&nbsp;Susan M. Gasser","doi":"10.1016/j.ceb.2024.102405","DOIUrl":"10.1016/j.ceb.2024.102405","url":null,"abstract":"<div><p>The substrate for the repair of DNA damage in living cells is not DNA but chromatin. Chromatin bears a range of modifications, which in turn bind ligands that compact or open chromatin structure, and determine its spatial organization within the nucleus. In some cases, RNA in the form of RNA:DNA hybrids or R-loops modulates DNA accessibility. Each of these parameters can favor particular pathways of repair. Chromatin or nucleosome remodelers are key regulators of chromatin structure, and a number of remodeling complexes are implicated in DNA repair. We cover novel insights into the impact of chromatin structure, nuclear organization, R-loop formation, nuclear actin, and nucleosome remodelers in DNA double-strand break repair, focusing on factors that alter repair functional upon ablation.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102405"},"PeriodicalIF":6.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095506742400084X/pdfft?md5=ca1de3d79255a08688cc83aa79c81a24&pid=1-s2.0-S095506742400084X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and dynamics of nuclear A/B compartments and subcompartments 核 A/B 区室和亚区室的结构与动态。
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-07-30 DOI: 10.1016/j.ceb.2024.102406
Asami Oji, Linda Choubani, Hisashi Miura, Ichiro Hiratani
{"title":"Structure and dynamics of nuclear A/B compartments and subcompartments","authors":"Asami Oji,&nbsp;Linda Choubani,&nbsp;Hisashi Miura,&nbsp;Ichiro Hiratani","doi":"10.1016/j.ceb.2024.102406","DOIUrl":"10.1016/j.ceb.2024.102406","url":null,"abstract":"<div><p>Mammalian chromosomes form a hierarchical structure within the cell nucleus, from chromatin loops, megabase (Mb)-sized topologically associating domains (TADs) to larger-scale A/B compartments. The molecular basis of the structures of loops and TADs has been actively studied. However, the A and B compartments, which correspond to early-replicating euchromatin and late-replicating heterochromatin, respectively, are still relatively unexplored. In this review, we focus on the A/B compartments, discuss their close relationship to DNA replication timing (RT), and introduce recent findings on the features of subcompartments revealed by detailed classification of the A/B compartments. In doing so, we speculate on the structure, potential function, and developmental dynamics of A/B compartments and subcompartments in mammalian cells.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102406"},"PeriodicalIF":6.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000851/pdfft?md5=17405d5f2da75f00d475af0747c0042d&pid=1-s2.0-S0955067424000851-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The desmosome as a dynamic membrane domain 脱膜体是一个动态膜域。
IF 6 2区 生物学
Current Opinion in Cell Biology Pub Date : 2024-07-29 DOI: 10.1016/j.ceb.2024.102403
Stephanie E. Zimmer, Andrew P. Kowalczyk
{"title":"The desmosome as a dynamic membrane domain","authors":"Stephanie E. Zimmer,&nbsp;Andrew P. Kowalczyk","doi":"10.1016/j.ceb.2024.102403","DOIUrl":"10.1016/j.ceb.2024.102403","url":null,"abstract":"<div><p>Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell–cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102403"},"PeriodicalIF":6.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信