{"title":"TERRA long noncoding RNA: At the interphase of telomere damage, rescue and signaling","authors":"Eftychia Kyriacou, Joachim Lingner","doi":"10.1016/j.ceb.2024.102437","DOIUrl":"10.1016/j.ceb.2024.102437","url":null,"abstract":"<div><div>TERRA long noncoding RNAs play key roles in telomere function and maintenance. They can orchestrate telomeric chromatin remodeling, regulate telomere maintenance by telomerase and homology-directed repair, and they participate in the telomeric DNA damage response. TERRA associates with chromosome ends through base-pairing forming R-loops, which are mediated by the RAD51 DNA recombinase and its partner RAD51AP1. Telomeric R-loops interfere with replication fork progression, stimulating a switch of telomere maintenance from semiconservative DNA replication to homology-directed repair (HDR). The latter mechanism is exploited by a subset of cancer cells that lack telomerase, referred to as ALT. In addition, TERRA stimulates HDR at short telomeres during aging, delaying cellular senescence. During carcinogenesis, when cells with eroded telomeres enter replicative crisis, TERRA acts as a signaling molecule to mediate autophagic cell death.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102437"},"PeriodicalIF":6.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclear speckle biology: At the cross-roads of discovery and functional analysis","authors":"Pankaj Chaturvedi , Andrew S. Belmont","doi":"10.1016/j.ceb.2024.102438","DOIUrl":"10.1016/j.ceb.2024.102438","url":null,"abstract":"","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102438"},"PeriodicalIF":6.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertex remodeling during epithelial morphogenesis","authors":"Kaoru Sugimura , Tetsuhisa Otani","doi":"10.1016/j.ceb.2024.102427","DOIUrl":"10.1016/j.ceb.2024.102427","url":null,"abstract":"<div><div>Epithelial cells adhere to each other via intercellular junctions that can be classified into bicellular junctions and tricellular contacts (vertices). Epithelial morphogenesis involves cell rearrangement and requires remodeling of bicellular junctions and vertices. Although our understanding of how bicellular junction mechanics drive epithelial morphogenesis has advanced, the mechanisms underlying vertex remodeling during this process have only received attention recently. In this review, we outline recent progress in our understanding of how cells reorganize cell adhesion and the cytoskeleton to trigger the displacement and resolution of cell vertices. We will also discuss how cells achieve the optimal balance between the structural flexibility and stability of their vertices. Finally, we introduce new modeling frameworks designed to analyze mechanics at cell vertices. Integration of live imaging and modeling techniques is providing new insights into the active roles of cell vertices during epithelial morphogenesis.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102427"},"PeriodicalIF":6.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional analysis of Hikeshi reveals physiological significance of nuclear Hsp70","authors":"Naoko Imamoto","doi":"10.1016/j.ceb.2024.102426","DOIUrl":"10.1016/j.ceb.2024.102426","url":null,"abstract":"<div><div>Nucleocytoplasmic transport is a basic cellular reaction that plays an important role in regulating cell physiology in eukaryotic cells. Here we show that the identification of one nucleocytoplasmic transport pathway led to the notification of intracellular reaction that has not been acknowledged. Hikeshi was originally identified as a nuclear import carrier of heat stress–induced nuclear import of molecular chaperone Hsp70. We now know that Hikeshi mediates nuclear import of Hsp70 at a variety of different cellular conditions, such as at normal conditions, at proteotoxic conditions, during differentiation, and probably more. Recent studies gradually revealed the physiological significances of Hikeshi-mediated nuclear import of Hsp70.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102426"},"PeriodicalIF":6.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Modern approaches in cytoskeleton-related topics","authors":"Carsten Janke, Ohad Medalia","doi":"10.1016/j.ceb.2024.102423","DOIUrl":"10.1016/j.ceb.2024.102423","url":null,"abstract":"","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102423"},"PeriodicalIF":6.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S0955-0674(24)00113-3","DOIUrl":"10.1016/S0955-0674(24)00113-3","url":null,"abstract":"","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102434"},"PeriodicalIF":6.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001133/pdfft?md5=b9ef862327222c67bad9d2435a0cb112&pid=1-s2.0-S0955067424001133-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Ptak , Saif Rehman , Richard W. Wozniak
{"title":"Mechanisms of nuclear envelope expansion","authors":"Christopher Ptak , Saif Rehman , Richard W. Wozniak","doi":"10.1016/j.ceb.2024.102425","DOIUrl":"10.1016/j.ceb.2024.102425","url":null,"abstract":"<div><p>In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102425"},"PeriodicalIF":6.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001042/pdfft?md5=5d606c4acd899cc6dbe1979656ab3001&pid=1-s2.0-S0955067424001042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hazrat Belal , Esther Feng Ying Ng , Franz Meitinger
{"title":"53BP1-mediated activation of the tumor suppressor p53","authors":"Hazrat Belal , Esther Feng Ying Ng , Franz Meitinger","doi":"10.1016/j.ceb.2024.102424","DOIUrl":"10.1016/j.ceb.2024.102424","url":null,"abstract":"<div><p>In recent years, the role of 53BP1 as a cell cycle regulator has come into the spotlight. 53BP1 is best understood for its role in controlling DNA double-strand break repair. However, 53BP1 was initially discovered as an interaction partner of the tumor suppressor p53, which proved to be independent of DNA repair. The importance of this interaction is becoming increasingly clear. 53BP1 responds to mitotic stress, which prolongs mitosis, or to DNA damage and triggers the stabilization of p53 by the deubiquitinase USP28 to stop the proliferation of potentially damaged cells. The ability of 53BP1 to respond to mitotic stress or DNA damage is controlled by cell cycle-specific post-translational modifications and is therefore restricted to specific cell cycle phases. 53BP1-mediated p53 activation is likely involved in tumor suppression and is associated with genetic diseases such as primary microcephaly. This review emphasizes the importance of these mechanisms for the development and maintenance of healthy tissues.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102424"},"PeriodicalIF":6.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001030/pdfft?md5=af2cd5b3e2fe21d2c6052021ec8030d5&pid=1-s2.0-S0955067424001030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defining and modeling dynamic spatial heterogeneity within tumor microenvironments","authors":"Bethany Bareham, Matthew Dibble, Maddy Parsons","doi":"10.1016/j.ceb.2024.102422","DOIUrl":"10.1016/j.ceb.2024.102422","url":null,"abstract":"<div><p>Many solid tumors exhibit significant genetic, cellular, and biophysical heterogeneity which dynamically evolves during disease progression and after treatment. This constant flux in cell composition, phenotype, spatial relationships, and tissue properties poses significant challenges in accurately diagnosing and treating patients. Much of the complexity lies in unraveling the molecular changes in different tumor compartments, how they influence one another in space and time and where vulnerabilities exist that might be appropriate to target therapeutically. Recent advances in spatial profiling tools and technologies are enabling new insight into the underlying biology of complex tumors, creating a greater understanding of the intricate relationship between cell types, states, and the microenvironment. Here we reflect on some recent discoveries in this area, where the key knowledge and technology gaps lie, and the advancements in spatial measurements and in vitro models for the study of spatial intratumoral heterogeneity.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102422"},"PeriodicalIF":6.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001017/pdfft?md5=c22a197e5c6b2b6dbcbde28cbadfb27b&pid=1-s2.0-S0955067424001017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct quantitative perturbations of physical parameters in vivo to elucidate vertebrate embryo morphogenesis","authors":"Soichiro Kato, Asako Shindo","doi":"10.1016/j.ceb.2024.102420","DOIUrl":"10.1016/j.ceb.2024.102420","url":null,"abstract":"<div><p>Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia <em>in vivo</em>. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102420"},"PeriodicalIF":6.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000991/pdfft?md5=96cdf7ffd157af86f6cbd9004045ba14&pid=1-s2.0-S0955067424000991-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}