{"title":"Direct quantitative perturbations of physical parameters in vivo to elucidate vertebrate embryo morphogenesis","authors":"","doi":"10.1016/j.ceb.2024.102420","DOIUrl":null,"url":null,"abstract":"<div><p>Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia <em>in vivo</em>. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000991/pdfft?md5=96cdf7ffd157af86f6cbd9004045ba14&pid=1-s2.0-S0955067424000991-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000991","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia in vivo. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.