{"title":"No more nonsense: evaluating poison exons as therapeutic targets in neurodevelopmental disorders","authors":"Shreeya Bakshi, Lori L Isom","doi":"10.1016/j.gde.2025.102346","DOIUrl":"10.1016/j.gde.2025.102346","url":null,"abstract":"<div><div>Alternative splicing of pre-mRNA generates multiple transcripts from a single gene, contributing to transcriptomic diversity. Alternative splicing can result in inclusion of poison exons (PEs), which contain a premature stop codons (PTC) that target transcripts for nonsense-mediated decay (NMD). PE-containing transcripts are prevalent in the brain, where they can play roles in fine-tuning mRNA and protein levels. Antisense, or splice-switching, oligonucleotides (ASOs/SSOs) are used to target PEs to reduce their inclusion and treat neurodevelopmental disorders. ASOs/SSOs address the genetic causes of disease and are precision therapies that can provide a cure rather than only address disease symptoms. This review explores the role of PEs in the brain, therapeutic targeting of PEs, and current challenges in our understanding of PEs.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102346"},"PeriodicalIF":3.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143799968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Beghѐ, Helena Harpham, Yasmine Barberic, Natalia Gromak
{"title":"R-loops in neurodegeneration","authors":"Chiara Beghѐ, Helena Harpham, Yasmine Barberic, Natalia Gromak","doi":"10.1016/j.gde.2025.102345","DOIUrl":"10.1016/j.gde.2025.102345","url":null,"abstract":"<div><div>Neurodegenerative diseases are associated with the progressive loss of neurons. R-loops are non-canonical nucleic acid structures formed during transcription and composed of an RNA/DNA hybrid and a displaced single-stranded DNA. Whilst R-loops are important regulators of cellular processes, they are also associated with the pathologies of multiple disorders, including repeat expansion, motor neuron, inflammatory and ageing diseases. In this review, we discuss how R-loops contribute to pathological mechanisms that underpin neurodegeneration. We highlight the role of R-loops in several hallmarks of neurodegenerative disorders, including RNA and DNA defects, DNA damage, protein aggregation, inflammation, mitochondrial dysfunction, and neuronal cell death. We also discuss the potential role of R-loops as therapeutic targets for neurodegenerative disorders.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102345"},"PeriodicalIF":3.7,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143790942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reshaping transcription and translation dynamics during the awakening of the zygotic genome","authors":"Louise Maillard , Pierre Bensidoun , Mounia Lagha","doi":"10.1016/j.gde.2025.102344","DOIUrl":"10.1016/j.gde.2025.102344","url":null,"abstract":"<div><div>During the oocyte-to-embryo transition, the transcriptome and proteome are dramatically reshaped. This transition entails a shift from maternally inherited mRNAs to newly synthesized transcripts, produced during the zygotic genome activation (ZGA). Furthermore, a crucial transcription and translation selectivity is required for early embryonic development. Studies across various model organisms have revealed conserved <em>cis-</em> and <em>trans-</em>regulatory mechanisms dictating the regimes by which mRNA and proteins are produced during this critical phase. In this article, we highlight recent technological and conceptual advances that deepen our understanding of how the tuning of both transcription and translation evolves during ZGA.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102344"},"PeriodicalIF":3.7,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sue Fletcher , Niall P Keegan , Rita Mejzini , Ianthe L Pitout
{"title":"To splice or not to splice: pseudoexons in neurological disease and opportunities for intervention","authors":"Sue Fletcher , Niall P Keegan , Rita Mejzini , Ianthe L Pitout","doi":"10.1016/j.gde.2025.102343","DOIUrl":"10.1016/j.gde.2025.102343","url":null,"abstract":"<div><div>Accurate exon selection and processing of pre-messenger RNA are crucial for normal gene expression. Mutations that alter splicing disrupt pre-mRNA processing and can have diverse effects on transcript structure, making the consequences of many such mutations difficult to predict. While next-generation sequencing technologies have transformed genetic diagnosis for many patients, deep intronic variants generally evade detection and characterisation. Of all the known types of splicing mutations, the most elusive to predict are those that activate pseudoexons. Because transcripts that contain pseudoexons are otherwise generally intact, exclusion (or ‘skipping’) of the pseudoexon during processing of the pre-mRNA is likely to generate a normal, functional mRNA. Characterisation of pseudoexon mutations will open opportunities for the development of antisense oligonucleotide strategies to overcome these disease-causing mutations.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102343"},"PeriodicalIF":3.7,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frederick CK Wong , Christina E Kim , Luz Garcia-Alonso , Roser Vento-Tormo
{"title":"The human endometrium: atlases, models, and prospects","authors":"Frederick CK Wong , Christina E Kim , Luz Garcia-Alonso , Roser Vento-Tormo","doi":"10.1016/j.gde.2025.102341","DOIUrl":"10.1016/j.gde.2025.102341","url":null,"abstract":"<div><div>Approximately every month, the human endometrium undergoes a cycle of proliferation, differentiation, and, in the absence of pregnancy, shedding and repair. Each cycle relies on intricate interorgan coordination of hormonal secretions. Endometrial dysfunction causes significant health complications, including abnormal menstrual bleeding and endometriosis. However, effective diagnosis and treatments are hampered by understudied aetiology. Recent single-cell profiling has disentangled the diverse and dynamic nature of the endometrium, revealing regulatory roles of WNT, NOTCH, and TGF<em>β</em> signalling. These insights have informed mechanistic studies enabled by advanced <em>in vitro</em> models that capture endometrial cellular heterogeneity and structure. In this review, we outline key single-cell transcriptomics atlases and models that provided new avenues for studying endometrial biology, discuss their limitations, and propose future directions.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102341"},"PeriodicalIF":3.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in RNA-based therapeutics for neurodevelopmental disorders","authors":"Harini P Tirumala , Huda Y Zoghbi","doi":"10.1016/j.gde.2025.102339","DOIUrl":"10.1016/j.gde.2025.102339","url":null,"abstract":"<div><div>A significant proportion of neurodevelopmental disorders (NDDs) are caused by gain-of-function (GOF) or loss-of-function (LOF) of specific genes. Strategies to normalize disease gene expression offer therapeutic potential for these disorders. The success and approval of RNA-based therapeutics for various disorders have led to a surge in RNA-based therapeutic research for NDDs with antisense oligonucleotides leading the field. This review discusses recent advances in therapeutic strategies that target pre-mRNA or mRNA for GOF and LOF NDDs that have promising preclinical evidence. These developments highlight important considerations and exciting future avenues for the development of therapies for NDDs.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102339"},"PeriodicalIF":3.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alternative splicing in addiction","authors":"Akanksha Bhatnagar , Elizabeth A Heller","doi":"10.1016/j.gde.2025.102340","DOIUrl":"10.1016/j.gde.2025.102340","url":null,"abstract":"<div><div>Addiction is a chronic and relapsing medical condition characterized by the compulsive use of drugs or alcohol despite harmful consequences. While transcriptional regulation has long been recognized for its role in addiction, recent genome-wide analyses have uncovered widespread alternative splicing changes that shift protein isoform diversity in multiple brain reward regions central to addiction. In this review, we discuss emerging research and evidence that alternative splicing is dysregulated in cocaine, alcohol, and opioid use disorders.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102340"},"PeriodicalIF":3.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Totipotency or plenipotency: rethinking stem cell bipotentiality","authors":"Duancheng Wen , Jianlong Wang","doi":"10.1016/j.gde.2025.102342","DOIUrl":"10.1016/j.gde.2025.102342","url":null,"abstract":"<div><div>The term ‘totipotency’ has often been misapplied in stem cell research to describe cells with embryonic and extraembryonic bipotentiality, despite a lack of evidence that they can generate an entire organism from a single cell. Additionally, no specific term currently distinguishes bipotential stem cells from pluripotent cells, which contribute poorly to extraembryonic tissues. This review examines the developmental continuum from totipotency to pluripotency in early embryos and revisits the previously proposed concept of plenipotency in preimplantation development. We evaluate emerging stem cell models that exhibit bipotentiality but have lost the ability to autonomously initiate and sustain the sequential fate decisions necessary to develop into a complete organism. Unlike totipotent embryonic cells, which retain the information required to initiate fate decisions at the correct timing and cell numbers, these stem cells have lost that capacity. This loss of critical developmental information distinguishes totipotency from plenipotency, with bipotential stem cells aligning more closely with the latter. By distinguishing plenipotency from totipotency and pluripotency, we aim to refine terminology, enhance our understanding of early embryonic development, and address ethical considerations in human research.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102342"},"PeriodicalIF":3.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genomic snowflakes: how the uniqueness of DNA folding allows us to smell the chemical universe","authors":"Longzhi Tan , X. Sunney Xie , Stavros Lomvardas","doi":"10.1016/j.gde.2025.102329","DOIUrl":"10.1016/j.gde.2025.102329","url":null,"abstract":"<div><div>Olfactory receptor (OR) gene choice, the stable expression of one out of >2000 OR alleles by olfactory sensory neurons, constitutes a gene regulatory process that is driven by three-dimensional nuclear architecture. Moreover, the differentiation-dependent process that culminates in monogenic and monoallelic OR transcription represents a powerful demonstration of the rich mechanistic insight that single-cell genomics and multiomics can provide toward the understanding of a biological process. At this review, we describe the latest advances in the understanding of OR gene regulation and highlight important standing questions regarding the emerging specificity of ultra-long-range genomic interaction and the contribution of transcription and noncoding RNAs.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102329"},"PeriodicalIF":3.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interplay of transposable elements and ageing: epigenetic regulation and potential epitranscriptomic influence","authors":"Raquel García-Vílchez, Diana Guallar","doi":"10.1016/j.gde.2025.102331","DOIUrl":"10.1016/j.gde.2025.102331","url":null,"abstract":"<div><div>Transposable elements (TEs) are mobile elements, which have been crucial for mammalian genome evolution and function. Their activity, which influences genomic stability, gene expression and chromatin state, is tightly regulated by complex mechanisms. This review examines recent findings on TE regulation and the dynamics and connection during the ageing process. Here, we explore the interplay between chromatin state, DNA, RNA, and histone modifications in controlling TE activity, with a special emphasis in elucidating the emerging role of epitranscriptomic modifications in TE regulation. Additionally, we analyse the connection between TE activation and ageing, with the perspective for future research that could reveal novel targets for alleviating physiological and pathological ageing and age-related diseases.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"92 ","pages":"Article 102331"},"PeriodicalIF":3.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}