Environmetrics最新文献

筛选
英文 中文
Fuzzy Clustering of Circular Time Series With Applications to Wind Data 循环时间序列的模糊聚类及其在风数据中的应用
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-10 DOI: 10.1002/env.2902
Ángel López-Oriona, Ying Sun, Rosa María Crujeiras
{"title":"Fuzzy Clustering of Circular Time Series With Applications to Wind Data","authors":"Ángel López-Oriona,&nbsp;Ying Sun,&nbsp;Rosa María Crujeiras","doi":"10.1002/env.2902","DOIUrl":"https://doi.org/10.1002/env.2902","url":null,"abstract":"<p>In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially Explicit Model to Disentangle Effects of Environment on Annual Fish Reproduction 揭示环境对鱼类年繁殖影响的空间显式模型
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-10 DOI: 10.1002/env.2894
Ilaria Pia, Elina Numminen, Lari Veneranta, Jarno Vanhatalo
{"title":"Spatially Explicit Model to Disentangle Effects of Environment on Annual Fish Reproduction","authors":"Ilaria Pia,&nbsp;Elina Numminen,&nbsp;Lari Veneranta,&nbsp;Jarno Vanhatalo","doi":"10.1002/env.2894","DOIUrl":"https://doi.org/10.1002/env.2894","url":null,"abstract":"<p>Population growth models are essential tools for natural resources management and conservation since they provide understanding on factors affecting renewal of natural animal populations. However, we still do not properly understand how the processes underlying reproduction of natural animal populations are affected by the environment at the spatial scale at which reproduction actually happens. A particular challenge for analyzing these processes is that observations from different life cycle stages are often collected at different spatial scales, and there is a lack of statistical methods to link local and spatially aggregated information. We address this challenge by developing spatially explicit population growth models for annually reproducing fish. Our approach integrates mechanistic Ricker and Beverton–Holt population growth models with a zero-inflated species distribution model and utilizes the hierarchical Bayesian approach to estimate the model parameters from data with varying spatial support: local scale count data on offspring and environment, and areal data from commercial fisheries informing about a spawning stock size. We show, both theoretically and empirically, that our models are identifiable and have good inferential performance. As a proof of concept application, we used the proposed models to analyze the drivers of whitefish <i>Coregonus laveratus</i> (L.) s.l.) reproduction along the Finnish coast of the Gulf of Bothnia in the Baltic Sea. The results show that the proposed model provides novel understanding beyond what would be attainable with earlier methods. The distributions of the reproduction areas, spawner density, and maximum proliferation rate were strongly dependent on local environmental conditions, but the effects and the relative importance of the covariates varied between these processes. The proposed models can be extended to other systems and organisms and enable ecologists to extract a better understanding of processes driving animal reproduction.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Causal Inference With Mechanistic Ecological Models: Evaluating Targeted Culling on Chronic Wasting Disease Dynamics in Cervids 基于机制生态学模型的时空因果推断:评价针对性扑杀对猪慢性消耗性疾病动态的影响
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-06 DOI: 10.1002/env.2901
Juan Francisco Mandujano Reyes, Ting Fung Ma, Ian P. McGahan, Daniel J. Storm, Daniel P. Walsh, Jun Zhu
{"title":"Spatiotemporal Causal Inference With Mechanistic Ecological Models: Evaluating Targeted Culling on Chronic Wasting Disease Dynamics in Cervids","authors":"Juan Francisco Mandujano Reyes,&nbsp;Ting Fung Ma,&nbsp;Ian P. McGahan,&nbsp;Daniel J. Storm,&nbsp;Daniel P. Walsh,&nbsp;Jun Zhu","doi":"10.1002/env.2901","DOIUrl":"https://doi.org/10.1002/env.2901","url":null,"abstract":"<p>Spatiotemporal causal inference methods are needed to detect the effect of interventions on indirectly measured epidemiological outcomes that go beyond studying spatiotemporal correlations. Chronic wasting disease (CWD) causes neurological degeneration and eventual death to white-tailed deer (<i>Odocoileus virginianus</i>) in Wisconsin. Targeted culling involves removing deer after traditional hunting seasons in areas with high CWD prevalence. The evaluation of the causal effects of targeted culling in the spread and growth of CWD is an important unresolved research and CWD management question that can guide surveillance efforts. Reaction–diffusion partial differential equations (PDEs) can be used to mechanistically model the underlying spatiotemporal dynamics of wildlife diseases, like CWD, allowing researchers to make inference about unobserved epidemiological quantities. These models indirectly regress spatiotemporal covariates on diffusion and growth rates parameterizing such PDEs, obtaining associational conclusions. In this work we develop an innovative method to obtain causal estimators for the effect of targeted culling interventions on CWD epidemiological processes using an inverse-probability-of-treatment-weighted technique by means of marginal structural models embedded in the PDE fitting process. Additionally we establish a novel scheme for sensitivity analysis under unmeasured confounder for testing the hypothesis of a significant causal effect in the indirectly measured epidemiological outcomes. Our methods can be broadly used to study the impact of spatiotemporal interventions and treatment exposures in the epidemiological evolution of infectious diseases that can help to inform future efforts to mitigate public health implications and wildlife disease burden.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Inference for Natural Resources and Biodiversity 自然资源与生物多样性的统计推断
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-06 DOI: 10.1002/env.70004
Sara Franceschi, Caterina Pisani
{"title":"Statistical Inference for Natural Resources and Biodiversity","authors":"Sara Franceschi,&nbsp;Caterina Pisani","doi":"10.1002/env.70004","DOIUrl":"https://doi.org/10.1002/env.70004","url":null,"abstract":"","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al. 关于Bonas等人“用统计和机器学习模型评估环境时间序列的可预测性”的讨论。
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-05 DOI: 10.1002/env.2898
Philipp Otto
{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al.","authors":"Philipp Otto","doi":"10.1002/env.2898","DOIUrl":"https://doi.org/10.1002/env.2898","url":null,"abstract":"<p>Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade-off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black-box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real-time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2898","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models 用统计和机器学习模型评估环境时间序列的可预测性的讨论
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-05 DOI: 10.1002/env.2900
Francesco Finazzi, Jacopo Rodeschini, Lorenzo Tedesco
{"title":"Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models","authors":"Francesco Finazzi,&nbsp;Jacopo Rodeschini,&nbsp;Lorenzo Tedesco","doi":"10.1002/env.2900","DOIUrl":"https://doi.org/10.1002/env.2900","url":null,"abstract":"<p>Building on the insights from Bonas et al. (2024), we explore the relationship between statistical and machine learning models in the analysis of environmental time series. We specifically address the unique challenges of environmental time series data, including the need to consider the multivariate approach and account for spatial dependence. Emphasizing the importance of various types of statistical inference in environmental studies—not limited to forecasting—we propose that viewing statistical and machine learning approaches as complementary rather than alternative methods can unlock innovative modeling strategies that enhance both predictive accuracy and interpretive power. To illustrate these concepts, we present a case study that highlights the key points raised in the discussion.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2900","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe 多维时空聚类——在欧洲环境可持续性评分中的应用
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-04 DOI: 10.1002/env.2893
Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto
{"title":"Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe","authors":"Caterina Morelli,&nbsp;Simone Boccaletti,&nbsp;Paolo Maranzano,&nbsp;Philipp Otto","doi":"10.1002/env.2893","DOIUrl":"https://doi.org/10.1002/env.2893","url":null,"abstract":"<p>The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multivariate Approach for Modeling Spatio-Temporal Agrometeorological Variables 时空农业气象变量建模的多变量方法
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-02-04 DOI: 10.1002/env.2891
Sandra De Iaco, Claudia Cappello, Monica Palma, Klaus Nordhausen
{"title":"A Multivariate Approach for Modeling Spatio-Temporal Agrometeorological Variables","authors":"Sandra De Iaco,&nbsp;Claudia Cappello,&nbsp;Monica Palma,&nbsp;Klaus Nordhausen","doi":"10.1002/env.2891","DOIUrl":"https://doi.org/10.1002/env.2891","url":null,"abstract":"<p>One of the main issues facing agrometeorological studies involves measuring and modeling the evolution of different environmental variables over time; this often requires a dense monitoring network. Spatio-temporal geostatistics has the potential to provide techniques and tools to estimate the spatio-temporal multiple covariance function and define an appropriate multivariate correlation function capable of reliable predictions. This paper presents a spatio-temporal multivariate geostatistical modeling approach based on the joint diagonalization of the empirical covariance matrix evaluated at different spatio-temporal lags. The possibility to consider a reduced number of uncorrelated variables (lower than the number of observed variables) and separately model the spatio-temporal evolution of these uncorrelated components represents a substantial simplification for multivariate modeling. A space–time linear coregionalization model (ST-LCM) with appropriate parametric models for the latent components was fitted to the matrix-valued covariance function estimated for five relevant agrometeorological variables, including evapotranspiration, minimum and maximum humidity, maximum temperature, and precipitation. The analyses highlight how to identify space–time components and choose the corresponding model by evaluating some characteristics of these components, such as symmetry, separability, and type of non-separability. The predictive results of this multivariate study will be of interest for agriculture, in particular for addressing drought emergencies.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P-min-Stable Regression Models for Time Series With Extreme Values of Limited Range 有限极值范围时间序列的p -min稳定回归模型
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-01-31 DOI: 10.1002/env.2897
Leonardo Brandao Freitas Nascimento, Max Sousa Lima, Luiz H. Duczmal
{"title":"P-min-Stable Regression Models for Time Series With Extreme Values of Limited Range","authors":"Leonardo Brandao Freitas Nascimento,&nbsp;Max Sousa Lima,&nbsp;Luiz H. Duczmal","doi":"10.1002/env.2897","DOIUrl":"https://doi.org/10.1002/env.2897","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, a <i>P-min-stable</i> regression model is proposed for a time series of extreme values observed in a limited interval. The model may be useful when the variable or indicator of interest is the minimum value of a series restricted to the unit interval and is related to other variables through a regression structure. The serial extremal dependence is induced through the marginalization of the Kumaraswamy distribution conditioned on a latent <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 <annotation>$$ alpha $$</annotation>\u0000 </semantics></math>-stable process. The model is flexible to capture trends, seasonality, and non-stationarity. Some properties of the model are presented, as well as the extremogram of the series. Procedures for estimation and inference are discussed and implemented via an Expectation-Maximization algorithm. As an illustration, the model was used to analyze the minimum relative humidity observed in the Brazilian Amazon.</p>\u0000 </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Editorial Collaborators 2024编辑合作伙伴
IF 1.5 3区 环境科学与生态学
Environmetrics Pub Date : 2025-01-22 DOI: 10.1002/env.2899
{"title":"2024 Editorial Collaborators","authors":"","doi":"10.1002/env.2899","DOIUrl":"https://doi.org/10.1002/env.2899","url":null,"abstract":"","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信