Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-02-18 DOI:10.1002/env.70001
Paolo Maranzano, Paul A. Parker
{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”","authors":"Paolo Maranzano,&nbsp;Paul A. Parker","doi":"10.1002/env.70001","DOIUrl":null,"url":null,"abstract":"<p>We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70001","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.

Abstract Image

“用统计和机器学习模型评估环境时间序列的可预测性”讨论
我们参与了Bonas等人(2024)的一篇有见地的文章“用统计和机器学习模型评估环境时间序列的可预测性”的讨论,在这篇文章中,作者赞扬了他们在比较各种方法来预测环境时间序列数据的挑战性任务方面所做的努力。我们集中讨论我们感兴趣的两个话题。首先,我们考虑允许异方差误差项的已探索方法的扩展。其次,我们考虑了转换数据的非高斯性和拟合模型。对于这两点,我们将使用作者提供的代码和数据来扩展他们的示例。最后,我们发现异方差误差项的建模有可能改善这些环境时间序列的点和区间估计。我们还发现使用变换来处理非高斯性可以改善区间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信