水文数据建模的新参数方法:贝塔、库马拉斯瓦米和简约模型的替代方法

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-02-26 DOI:10.1002/env.70006
Thiago A. N. De Andrade, Frank Gomes-Silva, Indranil Ghosh
{"title":"水文数据建模的新参数方法:贝塔、库马拉斯瓦米和简约模型的替代方法","authors":"Thiago A. N. De Andrade,&nbsp;Frank Gomes-Silva,&nbsp;Indranil Ghosh","doi":"10.1002/env.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose a new approach of continuous distributions in the unit interval, focusing on hydrological applications. This study presents the innovative two-parameter model called <i>modified exponentiated generalized</i> (MEG) distribution. The efficiency of the MEG distribution is evidenced through its application to 29 real datasets representing the percentage of useful water volume in hydroelectric power plant reservoirs in Brazil. The model outperforms the beta, simplex, and Kumaraswamy (KW) distributions, which are widely used for this type of analysis. The connection of our proposal with classical distributions, such as the Fréchet and KW distribution, broadens its applicability. While the Fréchet distribution is recognized for its usefulness in modeling extreme values, the proximity to KW allows a comprehensive analysis of hydrological data. The simple and tractable analytical expressions of the MEG's density and cumulative and quantile functions make it computationally feasible and particularly attractive for practical applications. Furthermore, this work highlights the relevance of the related reflected model: the <i>reflected modified exponentiated generalized distribution</i>. This contribution is expected to improve the statistical modeling of hydrological phenomena and provide new perspectives for future scientific investigations.</p>\n </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Parametric Approach for Modeling Hydrological Data: An Alternative to the Beta, Kumaraswamy, and Simplex Models\",\"authors\":\"Thiago A. N. De Andrade,&nbsp;Frank Gomes-Silva,&nbsp;Indranil Ghosh\",\"doi\":\"10.1002/env.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We propose a new approach of continuous distributions in the unit interval, focusing on hydrological applications. This study presents the innovative two-parameter model called <i>modified exponentiated generalized</i> (MEG) distribution. The efficiency of the MEG distribution is evidenced through its application to 29 real datasets representing the percentage of useful water volume in hydroelectric power plant reservoirs in Brazil. The model outperforms the beta, simplex, and Kumaraswamy (KW) distributions, which are widely used for this type of analysis. The connection of our proposal with classical distributions, such as the Fréchet and KW distribution, broadens its applicability. While the Fréchet distribution is recognized for its usefulness in modeling extreme values, the proximity to KW allows a comprehensive analysis of hydrological data. The simple and tractable analytical expressions of the MEG's density and cumulative and quantile functions make it computationally feasible and particularly attractive for practical applications. Furthermore, this work highlights the relevance of the related reflected model: the <i>reflected modified exponentiated generalized distribution</i>. This contribution is expected to improve the statistical modeling of hydrological phenomena and provide new perspectives for future scientific investigations.</p>\\n </div>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70006\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70006","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的单位区间连续分布方法,重点是水文应用。本文提出了一种新的双参数模型——修正指数广义分布模型。通过对代表巴西水电站水库有用水量百分比的29个实际数据集的应用,证明了MEG分布的效率。该模型优于广泛用于这类分析的beta、单纯形和Kumaraswamy (KW)分布。我们的建议与经典分布,如fr切特和KW分布的联系,扩大了它的适用性。虽然fr切特分布因其在模拟极值方面的有用性而得到认可,但与KW的接近性允许对水文数据进行全面分析。脑磁图的密度、累积函数和分位数函数的解析表达式简单易行,在计算上是可行的,在实际应用中特别具有吸引力。此外,本工作强调了相关反射模型的相关性:反射修正指数广义分布。这一贡献有望改善水文现象的统计建模,并为未来的科学研究提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Parametric Approach for Modeling Hydrological Data: An Alternative to the Beta, Kumaraswamy, and Simplex Models

We propose a new approach of continuous distributions in the unit interval, focusing on hydrological applications. This study presents the innovative two-parameter model called modified exponentiated generalized (MEG) distribution. The efficiency of the MEG distribution is evidenced through its application to 29 real datasets representing the percentage of useful water volume in hydroelectric power plant reservoirs in Brazil. The model outperforms the beta, simplex, and Kumaraswamy (KW) distributions, which are widely used for this type of analysis. The connection of our proposal with classical distributions, such as the Fréchet and KW distribution, broadens its applicability. While the Fréchet distribution is recognized for its usefulness in modeling extreme values, the proximity to KW allows a comprehensive analysis of hydrological data. The simple and tractable analytical expressions of the MEG's density and cumulative and quantile functions make it computationally feasible and particularly attractive for practical applications. Furthermore, this work highlights the relevance of the related reflected model: the reflected modified exponentiated generalized distribution. This contribution is expected to improve the statistical modeling of hydrological phenomena and provide new perspectives for future scientific investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信