循环时间序列的模糊聚类及其在风数据中的应用

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-02-10 DOI:10.1002/env.2902
Ángel López-Oriona, Ying Sun, Rosa María Crujeiras
{"title":"循环时间序列的模糊聚类及其在风数据中的应用","authors":"Ángel López-Oriona,&nbsp;Ying Sun,&nbsp;Rosa María Crujeiras","doi":"10.1002/env.2902","DOIUrl":null,"url":null,"abstract":"<p>In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2902","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Clustering of Circular Time Series With Applications to Wind Data\",\"authors\":\"Ángel López-Oriona,&nbsp;Ying Sun,&nbsp;Rosa María Crujeiras\",\"doi\":\"10.1002/env.2902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2902\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2902","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在环境科学中,从业者经常处理随时间顺序记录的数据,例如风向或风速的时间序列。在这种情况下,时间序列聚类是进行探索性分析的有用工具。虽然大多数提案都集中在实值时间序列上,但很少有作品考虑循环时间序列,尽管这些对象在许多学科中经常出现。本文介绍了循环时间序列的非相似性,并将其与软聚类方法相结合。该度量依赖于考虑圆弧的序列依赖度量,从而利用了序列范围固有的方向性特征。聚类方法能够将相似随机过程产生的时间序列聚在一起。仿真结果表明,该方法具有合理的聚类效果,在许多情况下优于其他方法。在沙特阿拉伯,两个涉及风向时间序列的有趣应用显示了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fuzzy Clustering of Circular Time Series With Applications to Wind Data

Fuzzy Clustering of Circular Time Series With Applications to Wind Data

In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信