Semiparametric Copula-Based Confidence Intervals on Level Curves for the Evaluation of the Risk Level Associated to Bivariate Events

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-02-20 DOI:10.1002/env.70005
Albert Folcher, Jean-François Quessy
{"title":"Semiparametric Copula-Based Confidence Intervals on Level Curves for the Evaluation of the Risk Level Associated to Bivariate Events","authors":"Albert Folcher,&nbsp;Jean-François Quessy","doi":"10.1002/env.70005","DOIUrl":null,"url":null,"abstract":"<p>If <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(X,Y\\right) $$</annotation>\n </semantics></math> is a random pair with distribution function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>ℙ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>≤</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>≤</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {F}_{X,Y}\\left(x,y\\right)=\\mathbb{P}\\left(X\\le x,Y\\le y\\right) $$</annotation>\n </semantics></math>, one can define the level curve of probability <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math> as the values of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\left(x,y\\right)\\in {\\mathbb{R}}^2 $$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$$ {F}_{X,Y}\\left(x,y\\right)=p $$</annotation>\n </semantics></math>. This level curve is at the base of bivariate versions of return periods for the assessment of risk associated with extreme events. In most uses of bivariate return periods, the values taken by <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(X,Y\\right) $$</annotation>\n </semantics></math> on this level curve are accorded equal significance. This paper adopts an innovative point-of-view by showing how to build confidence sets for the values of a pair of continuous random variables on a level curve. To this end, it is shown that the conditional distribution of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(X,Y\\right) $$</annotation>\n </semantics></math> given that the pair belongs to the level curve can be written in terms of the copula that characterizes its dependence structure. This allows for the definition of confidence sets on the level curve. It is suggested that the latter be estimated semi-parametrically, where the copula is assumed to belong to a given parametric family, and the marginals are replaced by their empirical counterparts. Formulas are derived for the Farlie–Gumbel–Morgenstern, Archimedean, Normal, and Student copulas. The methodology is illustrated on the risk level associated with the daily concentration of atmospheric pollutants.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70005","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

If ( X , Y ) $$ \left(X,Y\right) $$ is a random pair with distribution function F X , Y ( x , y ) = ( X x , Y y ) $$ {F}_{X,Y}\left(x,y\right)=\mathbb{P}\left(X\le x,Y\le y\right) $$ , one can define the level curve of probability p $$ p $$ as the values of ( x , y ) 2 $$ \left(x,y\right)\in {\mathbb{R}}^2 $$ such that F X , Y ( x , y ) = p $$ {F}_{X,Y}\left(x,y\right)=p $$ . This level curve is at the base of bivariate versions of return periods for the assessment of risk associated with extreme events. In most uses of bivariate return periods, the values taken by ( X , Y ) $$ \left(X,Y\right) $$ on this level curve are accorded equal significance. This paper adopts an innovative point-of-view by showing how to build confidence sets for the values of a pair of continuous random variables on a level curve. To this end, it is shown that the conditional distribution of ( X , Y ) $$ \left(X,Y\right) $$ given that the pair belongs to the level curve can be written in terms of the copula that characterizes its dependence structure. This allows for the definition of confidence sets on the level curve. It is suggested that the latter be estimated semi-parametrically, where the copula is assumed to belong to a given parametric family, and the marginals are replaced by their empirical counterparts. Formulas are derived for the Farlie–Gumbel–Morgenstern, Archimedean, Normal, and Student copulas. The methodology is illustrated on the risk level associated with the daily concentration of atmospheric pollutants.

Abstract Image

基于半参数copula的水平曲线置信区间评价与双变量事件相关的风险水平
如果(X, Y) $$ \left(X,Y\right) $$是具有分布函数fx的随机对,Y (x, Y) = a0 (x≤x, Y≤Y) $$ {F}_{X,Y}\left(x,y\right)=\mathbb{P}\left(X\le x,Y\le y\right) $$,可以将概率p $$ p $$的水平曲线定义为(x,y)∈∂2 $$ \left(x,y\right)\in {\mathbb{R}}^2 $$使得FX, Y (X, Y) = p $$ {F}_{X,Y}\left(x,y\right)=p $$。该水平曲线是用于评估与极端事件相关的风险的双变量回归期的基础。在大多数双变量回归期的使用中,(X, Y) $$ \left(X,Y\right) $$在该水平曲线上取的值具有同等意义。本文采用了一种创新的观点,展示了如何为水平曲线上的一对连续随机变量的值建立置信集。为此,证明了(X, Y) $$ \left(X,Y\right) $$的条件分布在给定的一对属于水平曲线的情况下,可以用表征其依赖结构的联结公式来表示。这允许在水平曲线上定义置信集。建议对后者进行半参数估计,其中假定联结属于给定的参数族,并用经验对应物代替边际。推导了法利-甘贝尔-摩根斯坦式、阿基米德式、普通式和学生式的公式。该方法用与大气污染物日浓度有关的风险水平加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信