{"title":"用统计和机器学习模型评估环境时间序列的可预测性","authors":"Nathaniel K. Newlands, Vyacheslav Lyubchich","doi":"10.1002/env.70000","DOIUrl":null,"url":null,"abstract":"<p>The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70000","citationCount":"0","resultStr":"{\"title\":\"“Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”\",\"authors\":\"Nathaniel K. Newlands, Vyacheslav Lyubchich\",\"doi\":\"10.1002/env.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70000\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70000","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
Bonas et al. 2004最近讨论了机器学习和统计方法的相对优点,他们就数据科学的增值效益和环境统计的未来角色为统计界提出了重要的开放性问题。具体来说,他们确定了三个主要的知识差距,其中统计学对于加强机器学习(ML)中的推理至关重要:提供一个基于ML模型的框架,可以解释,确定量化与复杂环境动态相关的不确定性的最佳方法,并全面确定ML的增值效益。我们将继续探讨这些一般性问题,并分享我们对海洋和陆地生态系统动力学建模的观点和见解。我们提出了几条调查路线,环境统计学家和数据科学家可以协同推进预测分析。
“Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”
The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.