{"title":"Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation","authors":"Jing An, Waixiang Cao","doi":"10.1051/m2an/2023003","DOIUrl":"https://doi.org/10.1051/m2an/2023003","url":null,"abstract":"In this paper, we present and study two spectral volume (SV) schemes of arbitrary order for diffusion equations by using the local discontinuous Galerkin formulation to discretize the viscous flux. The basic idea of the scheme is to rewrite the diffusion equation into an equivalent first-order system first, and then use the SV method to solve the system. The SV scheme is designed with control volumes constructed by using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as LSV and RSV schemes, respectively. The stability analysis for the linear diffusion equations based on alternating fluxes are provided, and optimal error estimates are established for both the exact solution and the auxiliary variable. Furthermore, a rigorous mathematical proof are given to demonstrate that the proposed RSV method is identical to the standard LDG method when applied to constant diffusion problems. Numerical experiments are presented to demonstrate the stability, accuracy and performance of the two SV schemes for both linear and nonlinear diffusion equations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85229666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anderson de Jesus Araújo Ramos, M. Rincon, Rodrigo L. R. Madureira, M. Freitas
{"title":"Exponential stabilization for carbon nanotubes modeled as Timoshenko beams with thermoelastic effects","authors":"Anderson de Jesus Araújo Ramos, M. Rincon, Rodrigo L. R. Madureira, M. Freitas","doi":"10.1051/m2an/2023002","DOIUrl":"https://doi.org/10.1051/m2an/2023002","url":null,"abstract":"In this article we consider the problem of heat conduction in carbon nanotubes modeled like Timoshenko beams, inspired by the work of J. Yoon textit{et al.} (Composites Part B: Engineering, textbf{35}(2), 87--93. 2004). Using the theory of semigroups of linear operators, we prove the well-posedness of the problem and the exponential stabilization of the total energy of the system of differential equations, partially damped, without assuming the known relationship of equality of wave velocities. Furthermore, we analyze the fully discrete problem using a finite difference scheme, introduced by a spatiotemporal discretization that combines explicit and implicit integration methods. We show the construction of numerical energy and simulations that prove our theoretical exponential decay results and display the convergence rates.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76435470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of a method to compute mixed-mode stress intensity factors for non-planar cracks in three-dimensions","authors":"Benjamin E. Grossman‐Ponemon, M. Negri, A. Lew","doi":"10.1051/m2an/2023001","DOIUrl":"https://doi.org/10.1051/m2an/2023001","url":null,"abstract":"In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85068462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implicit discretization of Lagrangian gas dynamics","authors":"Alexiane Plessier, S. Del Pino, B. Després","doi":"10.1051/m2an/2022102","DOIUrl":"https://doi.org/10.1051/m2an/2022102","url":null,"abstract":"We construct an original framework based on convex analysis to prove the existence and uniqueness of a solution to a class of implicit numerical schemes. We propose an application of this general framework in the case of a new non linear implicit scheme for the 1D Lagrangian gas dynamics equations. We provide numerical illustrations that corroborate our proof of unconditional stability for this non linear implicit scheme.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75214496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Singular versus boundary arcs for aircraft trajectory optimization in climbing phase","authors":"O. Cots, J. Gergaud, D. Goubinat, B. Wembe","doi":"10.1051/m2an/2022101","DOIUrl":"https://doi.org/10.1051/m2an/2022101","url":null,"abstract":"In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the air slope of the aircraft. This optimization problem is modeled as a Mayer optimal control problem with a single-input affine dynamics in the control and with two pure state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The candidates as minimizers are selected among a set of extremals given by the maximum principle. We first analyze the minimum time-to-climb problem with respect to the bounds of the state constraints, combining small time analysis, indirect multiple shooting and homotopy methods with monitoring. This investigation emphasizes two strategies: the common CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in control theory. We then compare these two procedures for the cost index criterion.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88206044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations","authors":"Mingzhu Zhang, X. Mao, Lijun Yi","doi":"10.1051/m2an/2022100","DOIUrl":"https://doi.org/10.1051/m2an/2022100","url":null,"abstract":"We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree k + 1 to the CG approximation of degree k . We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the L 2 -, H 1 - and L ∞ -norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81973458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: \"Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs\" [ESAIM: M2AN 55(2021) 1163--1198]","authors":"D. Đinh","doi":"10.1051/m2an/2022097","DOIUrl":"https://doi.org/10.1051/m2an/2022097","url":null,"abstract":"","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85141471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An EMA-conserving, pressure-robust and Re-semi-robust reconstruction method for incompressible Navier-Stokes simulations","authors":"Xu Li, H. Rui","doi":"10.1051/m2an/2022093","DOIUrl":"https://doi.org/10.1051/m2an/2022093","url":null,"abstract":"Proper EMA-balance (balance of kinetic energy, linear momentum and angular momentum), pressure-robustness and $Re$-semi-robustness ($Re$: Reynolds number) are three important properties of Navier--Stokes simulations with exactly divergence-free elements. This EMA-balance makes a method conserve kinetic energy, linear momentum and angular momentum in an appropriate sense; pressure-robustness means that the velocity errors are independent of the pressure; $Re$-semi-robustness means that the constants appearing in the error bounds of kinetic and dissipation energies do not explicitly depend on inverse powers of the viscosity. In this paper, based on the pressure-robust reconstruction framework and certain suggested reconstruction operators in [A. Linke and C. Merdon, {it Comput. Methods Appl. Mech. Engrg.} 311 (2016), 304-326], we propose a reconstruction method for a class of non-divergence-free simplicial elements which admits almost all the above properties. The only exception is the energy balance, where kinetic energy should be replaced by a suitably redefined discrete energy. The lowest order case is the Bernardi--Raugel element on general shape-regular meshes. Some numerical comparisons with exactly divergence-free methods, the original pressure-robust reconstruction methods and the EMAC method are provided to confirm our theoretical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76830319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quadratic stability of flux limiters","authors":"B. Després","doi":"10.1051/m2an/2022092","DOIUrl":"https://doi.org/10.1051/m2an/2022092","url":null,"abstract":"We propose a novel approach to study the quadratic stability of 2D flux limiters for non expansive transport equations. The theory is developed for the constant coefficient case on a cartesian grid. The convergence of the fully discrete nonlinear scheme is established in 2D with a rate not less than) in quadratic norm. It is a way to bypass the Goodman-Leveque obstruction Theorem. A new nonlinear scheme with corner correction is proposed. The scheme is formally second-order accurate away from characteristics points, satisfies the maximum principle and is proved to be convergent in quadratic norm. It is tested on simple numerical problems.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85850189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing and analyzing an explicit unconditionally stable finite element scheme for an equivalent B´erenger’s PML model *","authors":"Yunqing Huang, Jichun Li, Xin Liu","doi":"10.1051/m2an/2022086","DOIUrl":"https://doi.org/10.1051/m2an/2022086","url":null,"abstract":"The original B´erenger’s perfectly matched layer (PML) was quite effective in simulating wave propagation problem in unbounded domains. But its stability is very challenging to prove. Later, some equivalent PML models were developed by B´ecache and Joly [4] and their stabilities were established. Hence studying and developing efficicent numerical methods for solving those equivalent PML models are needed and interesting. Here we propose a novel explicit unconditionally stable finite element scheme to solve an equivalent B´erenger’s PML model. Both the stability and convergence analysis are proved for the proposed scheme. Numerical results justifying the theoretical analysis are presented. We also demonstrate the effectiveness of this PML in simulating wave propagation in the free space. To our best knowledge, this is the first explicit unconditionally stable finite element scheme developed for this PML model.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77162320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}