Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations

IF 1.9 3区 数学 Q2 Mathematics
Mingzhu Zhang, X. Mao, Lijun Yi
{"title":"Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations","authors":"Mingzhu Zhang, X. Mao, Lijun Yi","doi":"10.1051/m2an/2022100","DOIUrl":null,"url":null,"abstract":"We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree k + 1 to the CG approximation of degree k . We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the L 2 -, H 1 - and L ∞ -norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree k + 1 to the CG approximation of degree k . We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the L 2 -, H 1 - and L ∞ -norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.
非线性Volterra积分微分方程的连续Galerkin法的超收敛性和后处理
为了提高非线性Volterra积分-微分方程连续伽辽金(CG)方法的全局精度,提出了一种新的后处理技术。后处理技术背后的关键思想是将k + 1次的高阶Lobatto多项式添加到k次的CG近似中。我们首先证明了CG方法在时间分区的节点处是超收敛的。进一步证明了在l2 -、h1 -和L∞-范数下,后处理的CG近似比未处理的CG近似收敛快一个阶。作为后处理超收敛结果的副产品,我们构造了几个后验误差估计量,并证明了它们是渐近精确的。通过数值算例说明了后处理CG逼近的超收敛性和后验误差估计的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信