{"title":"三维非平面裂纹混合模态应力强度因子计算方法分析","authors":"Benjamin E. Grossman‐Ponemon, M. Negri, A. Lew","doi":"10.1051/m2an/2023001","DOIUrl":null,"url":null,"abstract":"In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a method to compute mixed-mode stress intensity factors for non-planar cracks in three-dimensions\",\"authors\":\"Benjamin E. Grossman‐Ponemon, M. Negri, A. Lew\",\"doi\":\"10.1051/m2an/2023001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Analysis of a method to compute mixed-mode stress intensity factors for non-planar cracks in three-dimensions
In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.