{"title":"Singular versus boundary arcs for aircraft trajectory optimization in climbing phase","authors":"O. Cots, J. Gergaud, D. Goubinat, B. Wembe","doi":"10.1051/m2an/2022101","DOIUrl":null,"url":null,"abstract":"In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the air slope of the aircraft. This optimization problem is modeled as a Mayer optimal control problem with a single-input affine dynamics in the control and with two pure state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The candidates as minimizers are selected among a set of extremals given by the maximum principle. We first analyze the minimum time-to-climb problem with respect to the bounds of the state constraints, combining small time analysis, indirect multiple shooting and homotopy methods with monitoring. This investigation emphasizes two strategies: the common CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in control theory. We then compare these two procedures for the cost index criterion.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022101","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the air slope of the aircraft. This optimization problem is modeled as a Mayer optimal control problem with a single-input affine dynamics in the control and with two pure state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The candidates as minimizers are selected among a set of extremals given by the maximum principle. We first analyze the minimum time-to-climb problem with respect to the bounds of the state constraints, combining small time analysis, indirect multiple shooting and homotopy methods with monitoring. This investigation emphasizes two strategies: the common CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in control theory. We then compare these two procedures for the cost index criterion.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.