磁通限制器的二次稳定性

IF 1.9 3区 数学 Q2 Mathematics
B. Després
{"title":"磁通限制器的二次稳定性","authors":"B. Després","doi":"10.1051/m2an/2022092","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to study the quadratic stability of 2D flux limiters for non expansive transport equations. The theory is developed for the constant coefficient case on a cartesian grid. The convergence of the fully discrete nonlinear scheme is established in 2D with a rate not less than) in quadratic norm. It is a way to bypass the Goodman-Leveque obstruction Theorem. A new nonlinear scheme with corner correction is proposed. The scheme is formally second-order accurate away from characteristics points, satisfies the maximum principle and is proved to be convergent in quadratic norm. It is tested on simple numerical problems.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quadratic stability of flux limiters\",\"authors\":\"B. Després\",\"doi\":\"10.1051/m2an/2022092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to study the quadratic stability of 2D flux limiters for non expansive transport equations. The theory is developed for the constant coefficient case on a cartesian grid. The convergence of the fully discrete nonlinear scheme is established in 2D with a rate not less than) in quadratic norm. It is a way to bypass the Goodman-Leveque obstruction Theorem. A new nonlinear scheme with corner correction is proposed. The scheme is formally second-order accurate away from characteristics points, satisfies the maximum principle and is proved to be convergent in quadratic norm. It is tested on simple numerical problems.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022092\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的方法来研究非膨胀输运方程的二维通量限制器的二次稳定性。该理论适用于直角网格上的常系数情况。在二维条件下,以不小于2次范数的速率建立了完全离散非线性格式的收敛性。这是一种绕过Goodman-Leveque阻塞定理的方法。提出了一种新的带角点校正的非线性格式。该格式在远离特征点处具有二阶精度,满足极大值原理,并在二次范数上具有收敛性。对简单的数值问题进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic stability of flux limiters
We propose a novel approach to study the quadratic stability of 2D flux limiters for non expansive transport equations. The theory is developed for the constant coefficient case on a cartesian grid. The convergence of the fully discrete nonlinear scheme is established in 2D with a rate not less than) in quadratic norm. It is a way to bypass the Goodman-Leveque obstruction Theorem. A new nonlinear scheme with corner correction is proposed. The scheme is formally second-order accurate away from characteristics points, satisfies the maximum principle and is proved to be convergent in quadratic norm. It is tested on simple numerical problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信