An EMA-conserving, pressure-robust and Re-semi-robust reconstruction method for incompressible Navier-Stokes simulations

IF 1.9 3区 数学 Q2 Mathematics
Xu Li, H. Rui
{"title":"An EMA-conserving, pressure-robust and Re-semi-robust reconstruction method for incompressible Navier-Stokes simulations","authors":"Xu Li, H. Rui","doi":"10.1051/m2an/2022093","DOIUrl":null,"url":null,"abstract":"Proper EMA-balance (balance of kinetic energy, linear momentum and angular momentum), pressure-robustness and $Re$-semi-robustness ($Re$: Reynolds number) are three important properties of Navier--Stokes simulations with exactly divergence-free elements. This EMA-balance makes a method conserve kinetic energy, linear momentum and angular momentum in an appropriate sense; pressure-robustness means that the velocity errors are independent of the pressure; $Re$-semi-robustness means that the constants appearing in the error bounds of kinetic and dissipation energies do not explicitly depend on inverse powers of the viscosity. In this paper, based on the pressure-robust reconstruction framework and certain suggested reconstruction operators in [A. Linke and C. Merdon, {\\it Comput. Methods Appl. Mech. Engrg.} 311 (2016), 304-326], we propose a reconstruction method for a class of non-divergence-free simplicial elements which admits almost all the above properties. The only exception is the energy balance, where kinetic energy should be replaced by a suitably redefined discrete energy. The lowest order case is the Bernardi--Raugel element on general shape-regular meshes. Some numerical comparisons with exactly divergence-free methods, the original pressure-robust reconstruction methods and the EMAC method are provided to confirm our theoretical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022093","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Proper EMA-balance (balance of kinetic energy, linear momentum and angular momentum), pressure-robustness and $Re$-semi-robustness ($Re$: Reynolds number) are three important properties of Navier--Stokes simulations with exactly divergence-free elements. This EMA-balance makes a method conserve kinetic energy, linear momentum and angular momentum in an appropriate sense; pressure-robustness means that the velocity errors are independent of the pressure; $Re$-semi-robustness means that the constants appearing in the error bounds of kinetic and dissipation energies do not explicitly depend on inverse powers of the viscosity. In this paper, based on the pressure-robust reconstruction framework and certain suggested reconstruction operators in [A. Linke and C. Merdon, {\it Comput. Methods Appl. Mech. Engrg.} 311 (2016), 304-326], we propose a reconstruction method for a class of non-divergence-free simplicial elements which admits almost all the above properties. The only exception is the energy balance, where kinetic energy should be replaced by a suitably redefined discrete energy. The lowest order case is the Bernardi--Raugel element on general shape-regular meshes. Some numerical comparisons with exactly divergence-free methods, the original pressure-robust reconstruction methods and the EMAC method are provided to confirm our theoretical results.
不可压缩Navier-Stokes模拟的一种ema守恒、压力鲁棒和re-半鲁棒重建方法
适当的ema -平衡(动能、线性动量和角动量的平衡)、压力-鲁棒性和$Re$-半鲁棒性($Re$:雷诺数)是具有完全无散度元素的Navier- Stokes模拟的三个重要性质。这种ema平衡使一种方法在适当意义上守恒了动能、线动量和角动量;压力鲁棒性是指速度误差与压力无关;Re -半鲁棒性意味着出现在动能和耗散能误差范围内的常数不明确地依赖于粘度的逆幂。本文基于[A]中的压力-鲁棒重构框架和若干建议重构算子。林克和C.默顿,{\it计算机。方法:。动力机械。Engrg。{311(2016), 304-326],我们提出了一类非无散度简单元的重构方法,该方法几乎具有上述所有性质。唯一的例外是能量平衡,动能应该被适当重新定义的离散能量所取代。最低阶的情况是一般形状规则网格上的Bernardi- Raugel单元。通过与完全无发散方法、原始压力鲁棒重建方法和EMAC方法的数值比较,验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信