{"title":"用局部不连续伽辽金公式求解扩散方程的任意阶谱体积法","authors":"Jing An, Waixiang Cao","doi":"10.1051/m2an/2023003","DOIUrl":null,"url":null,"abstract":"In this paper, we present and study two spectral volume (SV) schemes of arbitrary order for diffusion equations by using the local discontinuous Galerkin formulation to discretize the viscous flux. The basic idea of the scheme is to rewrite the diffusion equation into an equivalent first-order system first, and then use the SV method to solve the system. The SV scheme is designed with control volumes constructed by using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as LSV and RSV schemes, respectively. The stability analysis for the linear diffusion equations based on alternating fluxes are provided, and optimal error estimates are established for both the exact solution and the auxiliary variable. Furthermore, a rigorous mathematical proof are given to demonstrate that the proposed RSV method is identical to the standard LDG method when applied to constant diffusion problems. Numerical experiments are presented to demonstrate the stability, accuracy and performance of the two SV schemes for both linear and nonlinear diffusion equations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation\",\"authors\":\"Jing An, Waixiang Cao\",\"doi\":\"10.1051/m2an/2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present and study two spectral volume (SV) schemes of arbitrary order for diffusion equations by using the local discontinuous Galerkin formulation to discretize the viscous flux. The basic idea of the scheme is to rewrite the diffusion equation into an equivalent first-order system first, and then use the SV method to solve the system. The SV scheme is designed with control volumes constructed by using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as LSV and RSV schemes, respectively. The stability analysis for the linear diffusion equations based on alternating fluxes are provided, and optimal error estimates are established for both the exact solution and the auxiliary variable. Furthermore, a rigorous mathematical proof are given to demonstrate that the proposed RSV method is identical to the standard LDG method when applied to constant diffusion problems. Numerical experiments are presented to demonstrate the stability, accuracy and performance of the two SV schemes for both linear and nonlinear diffusion equations.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation
In this paper, we present and study two spectral volume (SV) schemes of arbitrary order for diffusion equations by using the local discontinuous Galerkin formulation to discretize the viscous flux. The basic idea of the scheme is to rewrite the diffusion equation into an equivalent first-order system first, and then use the SV method to solve the system. The SV scheme is designed with control volumes constructed by using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as LSV and RSV schemes, respectively. The stability analysis for the linear diffusion equations based on alternating fluxes are provided, and optimal error estimates are established for both the exact solution and the auxiliary variable. Furthermore, a rigorous mathematical proof are given to demonstrate that the proposed RSV method is identical to the standard LDG method when applied to constant diffusion problems. Numerical experiments are presented to demonstrate the stability, accuracy and performance of the two SV schemes for both linear and nonlinear diffusion equations.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.