Evolutionary Computation最新文献

筛选
英文 中文
Genetic Programming for Automatically Evolving Multiple Features to Classification. 遗传编程自动演化分类的多重特征
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-19 DOI: 10.1162/evco_a_00359
Peng Wang, Bing Xue, Jing Liang, Mengjie Zhang
{"title":"Genetic Programming for Automatically Evolving Multiple Features to Classification.","authors":"Peng Wang, Bing Xue, Jing Liang, Mengjie Zhang","doi":"10.1162/evco_a_00359","DOIUrl":"https://doi.org/10.1162/evco_a_00359","url":null,"abstract":"<p><p>Performing classification on high-dimensional data poses a significant challenge due to the huge search space. Moreover, complex feature interactions introduce an additional obstacle. The problems can be addressed by using feature selection to select relevant features or feature construction to construct a small set of high-level features. However, performing feature selection or feature construction only might make the feature set suboptimal. To remedy this problem, this study investigates the use of genetic programming for simultaneous feature selection and feature construction in addressing different classification tasks. The proposed approach is tested on 16 datasets and compared with seven methods including both feature selection and feature constructions techniques. The results show that the obtained feature sets with the constructed and/or selected features can significantly increase the classification accuracy and reduce the dimensionality of the datasets. Further analysis reveals the complementarity of the obtained features leading to the promising classification performance of the proposed method.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering and Exploiting Sparse Rewards in a Learned Behavior Space. 在学习行为空间中发现和利用稀疏奖励。
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-03 DOI: 10.1162/evco_a_00343
Giuseppe Paolo, Miranda Coninx, Alban Laflaquière, Stephane Doncieux
{"title":"Discovering and Exploiting Sparse Rewards in a Learned Behavior Space.","authors":"Giuseppe Paolo, Miranda Coninx, Alban Laflaquière, Stephane Doncieux","doi":"10.1162/evco_a_00343","DOIUrl":"10.1162/evco_a_00343","url":null,"abstract":"<p><p>Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of setting has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Exploration algorithms have been proposed that require the definition of a low-dimension behavior space, in which the behavior generated by the agent's policy can be represented. The need to design a priori this space such that it is worth exploring is a major limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while optimizing any reward discovered (see Figure 1). It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-step process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space it explores.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Analysis of Simple Novelty Search. 简单新奇搜索的初步分析。
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-03 DOI: 10.1162/evco_a_00340
R Paul Wiegand
{"title":"Preliminary Analysis of Simple Novelty Search.","authors":"R Paul Wiegand","doi":"10.1162/evco_a_00340","DOIUrl":"10.1162/evco_a_00340","url":null,"abstract":"<p><p>Novelty search is a powerful tool for finding diverse sets of objects in complicated spaces. Recent experiments on simplified versions of novelty search introduce the idea that novelty search happens at the level of the archive space, rather than individual points. The sparseness measure and archive update criterion create a process that is driven by a two measures: (1) spread out to cover the space while trying to remain as efficiently packed as possible, and (2) metrics inspired by k nearest neighbor theory. In this paper, we generalize previous simplifications of novelty search to include traditional population (μ,λ) dynamics for generating new search points, where the population and the archive are updated separately. We provide some theoretical guidance regarding balancing mutation and sparseness criteria and introduce the concept of saturation as a way of talking about fully covered spaces. We show empirically that claims that novelty search is inherently objectiveless are incorrect. We leverage the understanding of novelty search as an optimizer of archive coverage, suggest several ways to improve the search, and demonstrate one simple improvement-generating some new points directly from the archive rather than the parent population.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Tri-Objective Method for Bi-Objective Feature Selection in Classification. 分类中双目标特征选择的三目标方法
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-03 DOI: 10.1162/evco_a_00339
Ruwang Jiao, Bing Xue, Mengjie Zhang
{"title":"A Tri-Objective Method for Bi-Objective Feature Selection in Classification.","authors":"Ruwang Jiao, Bing Xue, Mengjie Zhang","doi":"10.1162/evco_a_00339","DOIUrl":"10.1162/evco_a_00339","url":null,"abstract":"<p><p>Minimizing the number of selected features and maximizing the classification performance are two main objectives in feature selection, which can be formulated as a bi-objective optimization problem. Due to the complex interactions between features, a solution (i.e., feature subset) with poor objective values does not mean that all the features it selects are useless, as some of them combined with other complementary features can greatly improve the classification performance. Thus, it is necessary to consider not only the performance of feature subsets in the objective space, but also their differences in the search space, to explore more promising feature combinations. To this end, this paper proposes a tri-objective method for bi-objective feature selection in classification, which solves a bi-objective feature selection problem as a tri-objective problem by considering the diversity (differences) between feature subsets in the search space as the third objective. The selection based on the converted tri-objective method can maintain a balance between minimizing the number of selected features, maximizing the classification performance, and exploring more promising feature subsets. Furthermore, a novel initialization strategy and an offspring reproduction operator are proposed to promote the diversity of feature subsets in the objective space and improve the search ability, respectively. The proposed algorithm is compared with five multiobjective-based feature selection methods, six typical feature selection methods, and two peer methods with diversity as a helper objective. Experimental results on 20 real-world classification datasets suggest that the proposed method outperforms the compared methods in most scenarios.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. IOHexperimenter:迭代优化启发法基准测试平台。
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-03 DOI: 10.1162/evco_a_00342
Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck
{"title":"IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics.","authors":"Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck","doi":"10.1162/evco_a_00342","DOIUrl":"10.1162/evco_a_00342","url":null,"abstract":"<p><p>We present IOHexperimenter, the experimentation module of the IOHprofiler project. IOHexperimenter aims at providing an easy-to-use and customizable toolbox for benchmarking iterative optimization heuristics such as local search, evolutionary and genetic algorithms, and Bayesian optimization techniques. IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other modules of the IOHprofiler environment. IOHexperimenter provides an efficient interface between optimization problems and their solvers while allowing for granular logging of the optimization process. Its logs are fully compatible with existing tools for interactive data analysis, which significantly speeds up the deployment of a benchmarking pipeline. The main components of IOHexperimenter are the environment to build customized problem suites and the various logging options that allow users to steer the granularity of the data records.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9862561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python. Pflacco:用 Python 对连续和受限优化问题进行基于特征的景观分析
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-09-03 DOI: 10.1162/evco_a_00341
Raphael Patrick Prager, Heike Trautmann
{"title":"Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python.","authors":"Raphael Patrick Prager, Heike Trautmann","doi":"10.1162/evco_a_00341","DOIUrl":"10.1162/evco_a_00341","url":null,"abstract":"<p><p>The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area of optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features are already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary Sparsity Regularisation-based Feature Selection for Binary Classification. 基于进化稀疏正则化的二元分类特征选择
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-08-22 DOI: 10.1162/evco_a_00358
Bach Hoai Nguyen, Bing Xue, Mengjie Zhang
{"title":"Evolutionary Sparsity Regularisation-based Feature Selection for Binary Classification.","authors":"Bach Hoai Nguyen, Bing Xue, Mengjie Zhang","doi":"10.1162/evco_a_00358","DOIUrl":"https://doi.org/10.1162/evco_a_00358","url":null,"abstract":"<p><p>In classification, feature selection is an essential pre-processing step that selects a small subset of features to improve classification performance. Existing feature selection approaches can be divided into three main approaches: wrapper approaches, filter approaches, and embedded approaches. In comparison with two other approaches, embedded approaches usually have better trade-off between classification performance and computation time. One of the most well-known embedded approaches is sparsity regularisation-based feature selection which generates sparse solutions for feature selection. Despite its good performance, sparsity regularisation-based feature selection outputs only a feature ranking which requires the number of selected features to be predefined. More importantly, the ranking mechanism introduces a risk of ignoring feature interactions which leads to the fact that many top-ranked but redundant features are selected. This work addresses the above problems by proposing a new representation that considers the interactions between features and can automatically determine an appropriate number of selected features. The proposed representation is used in a differential evolutionary (DE) algorithm to optimise the feature subset. In addition, a novel initialisation mechanism is proposed to let DE consider various numbers of selected features at the beginning. The proposed algorithm is examined on both synthetic and real-world datasets. The results on the synthetic dataset show that the proposed algorithm can select complementary features while existing sparsity regularisation-based feature selection algorithms are at risk of selecting redundant features. The results on real-world datasets show that the proposed algorithm achieves better classification performance than well-known wrapper, filter, and embedded approaches. The algorithm is also as efficient as filter feature selection approaches.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context. 进化黑箱背景下的代用模型景观分析
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-08-14 DOI: 10.1162/evco_a_00357
Zbyněk Pitra, Jan Koza, Jiří Tumpach, Martin Holeňa
{"title":"Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context.","authors":"Zbyněk Pitra, Jan Koza, Jiří Tumpach, Martin Holeňa","doi":"10.1162/evco_a_00357","DOIUrl":"https://doi.org/10.1162/evco_a_00357","url":null,"abstract":"<p><p>Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationships between the predictive accuracy of surrogate models, their settings, and features of the black-box function landscape during evolutionary optimization by the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) state-of-the-art optimizer for expensive continuous black-box tasks. This study aims to establish the foundation for specific rules and automated methods for selecting and tuning surrogate models by exploring relationships between landscape features and model errors, focusing on the behavior of a specific model within each generation in contrast to selecting a specific algorithm at the outset. We perform a feature analysis process, identifying a significant number of non-robust features and clustering similar landscape features, resulting in the selection of 14 features out of 384, varying with input data selection methods. Our analysis explores the error dependencies of four models across 39 settings, utilizing three methods for input data selection, drawn from surrogate-assisted CMA-ES runs on noiseless benchmarks within the Comparing Continuous Optimizers framework.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables. 针对具有正态分布随机变量的机会约束优化问题的单目标和多目标进化算法的运行时间分析
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-08-02 DOI: 10.1162/evco_a_00355
Frank Neumann, Carsten Witt
{"title":"Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables.","authors":"Frank Neumann, Carsten Witt","doi":"10.1162/evco_a_00355","DOIUrl":"https://doi.org/10.1162/evco_a_00355","url":null,"abstract":"<p><p>Chance constrained optimization problems allow to model problems where constraints involving stochastic components should only be violated with a small probability. Evolutionary algorithms have been applied to this scenario and shown to achieve high quality results. With this paper, we contribute to the theoretical understanding of evolutionary algorithms for chance constrained optimization. We study the scenario of stochastic components that are independent and normally distributed. Considering the simple single-objective (1+1) EA, we show that imposing an additional uniform constraint already leads to local optima for very restricted scenarios and an exponential optimization time. We therefore introduce a multi-objective formulation of the problem which trades off the expected cost and its variance. We show that multi-objective evolutionary algorithms are highly effective when using this formulation and obtain a set of solutions that contains an optimal solution for any possible confidence level imposed on the constraint. Furthermore, we prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem. In order to deal with potentially exponentially many trade-offs in the multi-objective formulation, we propose and analyze improved convex multi-objective approaches. Experimental investigations on instances of the NP-hard stochastic minimum weight dominating set problem confirm the benefit of the multi-objective and the improved convex multi-objective approach in practice.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Machine Learning Methods to Assess Module Performance Contribution in Modular Optimization Frameworks. 使用机器学习方法评估模块化优化框架中的模块性能贡献。
IF 4.6 2区 计算机科学
Evolutionary Computation Pub Date : 2024-08-02 DOI: 10.1162/evco_a_00356
Ana Kostovska, Diederick Vermetten, Peter Korošec, Sašo Džeroski, Carola Doerr, Tome Eftimov
{"title":"Using Machine Learning Methods to Assess Module Performance Contribution in Modular Optimization Frameworks.","authors":"Ana Kostovska, Diederick Vermetten, Peter Korošec, Sašo Džeroski, Carola Doerr, Tome Eftimov","doi":"10.1162/evco_a_00356","DOIUrl":"https://doi.org/10.1162/evco_a_00356","url":null,"abstract":"<p><p>Modular algorithm frameworks not only allow for combinations never tested in manually selected algorithm portfolios, but they also provide a structured approach to assess which algorithmic ideas are crucial for the observed performance of algorithms. In this study, we propose a methodology for analyzing the impact of the different modules on the overall performance. We consider modular frameworks for two widely used families of derivative-free black-box optimization algorithms, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and differential evolution (DE). More specifically, we use performance data of 324 modCMA-ES and 576 modDE algorithm variants (with each variant corresponding to a specific configuration of modules) obtained on the 24 BBOB problems for 6 different runtime budgets in 2 dimensions. Our analysis of these data reveals that the impact of individual modules on overall algorithm performance varies significantly. Notably, among the examined modules, the elitism module in CMA-ES and the linear population size reduction module in DE exhibit the most significant impact on performance. Furthermore, our exploratory data analysis of problem landscape data suggests that the most relevant landscape features remain consistent regardless of the configuration of individual modules, but the influence that these features have on regression accuracy varies. In addition, we apply classifiers that exploit feature importance with respect to the trained models for performance prediction and performance data, to predict the modular configurations of CMA-ES and DE algorithm variants. The results show that the predicted configurations do not exhibit a statistically significant difference in performance compared to the true configurations, with the percentage varying depending on the setup (from 49.1% to 95.5% for mod-CMA and 21.7% to 77.1% for DE).</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信