Maria Laura Santoni, Elena Raponi, Aneta Neumann, Frank Neumann, Mike Preuss, Carola Doerr
{"title":"黑箱优化中多样性与适应度的权衡。","authors":"Maria Laura Santoni, Elena Raponi, Aneta Neumann, Frank Neumann, Mike Preuss, Carola Doerr","doi":"10.1162/evco.a.28","DOIUrl":null,"url":null,"abstract":"<p><p>In real-world applications, users often favor structurally diverse design choices over one high-quality solution. It is therefore important to consider more solutions that decision makers can compare and further explore based on additional criteria. Alongside the existing approaches of evolutionary diversity optimization, quality diversity, and multimodal optimization, this paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold while maximizing their average quality. We obtain first insight into these objectives by performing a subset selection on the search trajectories of different well-established search heuristics, whether they have been specifically designed with diversity in mind or not. We emphasize that the main goal of our work is not to present a new algorithm but to understand the capability of off-the-shelf algorithms to quantify the trade-off between the minimum pairwise distance within batches of solutions and their average quality. We also analyze how this trade-off depends on the properties of the underlying optimization problem. A possibly surprising outcome of our empirical study is the observation that naive uniform random sampling establishes a very strong baseline for our problem, hardly ever outperformed by the search trajectories of the considered heuristics. We interpret these results as a motivation to develop algorithms tailored to produce diverse solutions of high average quality.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-21"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization.\",\"authors\":\"Maria Laura Santoni, Elena Raponi, Aneta Neumann, Frank Neumann, Mike Preuss, Carola Doerr\",\"doi\":\"10.1162/evco.a.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In real-world applications, users often favor structurally diverse design choices over one high-quality solution. It is therefore important to consider more solutions that decision makers can compare and further explore based on additional criteria. Alongside the existing approaches of evolutionary diversity optimization, quality diversity, and multimodal optimization, this paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold while maximizing their average quality. We obtain first insight into these objectives by performing a subset selection on the search trajectories of different well-established search heuristics, whether they have been specifically designed with diversity in mind or not. We emphasize that the main goal of our work is not to present a new algorithm but to understand the capability of off-the-shelf algorithms to quantify the trade-off between the minimum pairwise distance within batches of solutions and their average quality. We also analyze how this trade-off depends on the properties of the underlying optimization problem. A possibly surprising outcome of our empirical study is the observation that naive uniform random sampling establishes a very strong baseline for our problem, hardly ever outperformed by the search trajectories of the considered heuristics. We interpret these results as a motivation to develop algorithms tailored to produce diverse solutions of high average quality.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco.a.28\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco.a.28","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization.
In real-world applications, users often favor structurally diverse design choices over one high-quality solution. It is therefore important to consider more solutions that decision makers can compare and further explore based on additional criteria. Alongside the existing approaches of evolutionary diversity optimization, quality diversity, and multimodal optimization, this paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold while maximizing their average quality. We obtain first insight into these objectives by performing a subset selection on the search trajectories of different well-established search heuristics, whether they have been specifically designed with diversity in mind or not. We emphasize that the main goal of our work is not to present a new algorithm but to understand the capability of off-the-shelf algorithms to quantify the trade-off between the minimum pairwise distance within batches of solutions and their average quality. We also analyze how this trade-off depends on the properties of the underlying optimization problem. A possibly surprising outcome of our empirical study is the observation that naive uniform random sampling establishes a very strong baseline for our problem, hardly ever outperformed by the search trajectories of the considered heuristics. We interpret these results as a motivation to develop algorithms tailored to produce diverse solutions of high average quality.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.