P-NP instance decomposition based on the Fourier transform for solving the Linear Ordering Problem.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xabier Benavides, Leticia Hernando, Josu Ceberio, Jose A Lozano
{"title":"P-NP instance decomposition based on the Fourier transform for solving the Linear Ordering Problem.","authors":"Xabier Benavides, Leticia Hernando, Josu Ceberio, Jose A Lozano","doi":"10.1162/evco_a_00368","DOIUrl":null,"url":null,"abstract":"<p><p>The Fourier transform over finite groups has proved to be a useful tool for analyzing combinatorial optimization problems. However, few heuristic and meta-heuristic algorithms have been proposed in the literature that utilize the information provided by this technique to guide the search process. In this work, we attempt to address this research gap by considering the case study of the Linear Ordering Problem (LOP). Based on the Fourier transform, we propose an instance decomposition strategy that divides any LOP instance into the sum of two LOP instances associated with a P and an NP-Hard optimization problem. By linearly aggregating the instances obtained from the decomposition, it is possible to create artificial instances with modified proportions of the P and NP-Hard components. Conducted experiments show that increasing the weight of the P component leads to a less rugged fitness landscape suitable for local search-based optimization. We take advantage of this phenomenon by presenting a new meta-heuristic algorithm called P-Descent Search (PDS). The proposed method, first, optimizes a surrogate instance with a high proportion of the P component, and then, gradually increases the weight of the NP-Hard component until the original instance is reached. The multi-start version of PDS shows a promising and predictable performance that appears to be correlated to specific characteristics of the problem, which could open the door to an automatic tuning of its hyper-parameters.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-28"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00368","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Fourier transform over finite groups has proved to be a useful tool for analyzing combinatorial optimization problems. However, few heuristic and meta-heuristic algorithms have been proposed in the literature that utilize the information provided by this technique to guide the search process. In this work, we attempt to address this research gap by considering the case study of the Linear Ordering Problem (LOP). Based on the Fourier transform, we propose an instance decomposition strategy that divides any LOP instance into the sum of two LOP instances associated with a P and an NP-Hard optimization problem. By linearly aggregating the instances obtained from the decomposition, it is possible to create artificial instances with modified proportions of the P and NP-Hard components. Conducted experiments show that increasing the weight of the P component leads to a less rugged fitness landscape suitable for local search-based optimization. We take advantage of this phenomenon by presenting a new meta-heuristic algorithm called P-Descent Search (PDS). The proposed method, first, optimizes a surrogate instance with a high proportion of the P component, and then, gradually increases the weight of the NP-Hard component until the original instance is reached. The multi-start version of PDS shows a promising and predictable performance that appears to be correlated to specific characteristics of the problem, which could open the door to an automatic tuning of its hyper-parameters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信