Xabier Benavides, Leticia Hernando, Josu Ceberio, Jose A Lozano
{"title":"P-NP instance decomposition based on the Fourier transform for solving the Linear Ordering Problem.","authors":"Xabier Benavides, Leticia Hernando, Josu Ceberio, Jose A Lozano","doi":"10.1162/evco_a_00368","DOIUrl":null,"url":null,"abstract":"<p><p>The Fourier transform over finite groups has proved to be a useful tool for analyzing combinatorial optimization problems. However, few heuristic and meta-heuristic algorithms have been proposed in the literature that utilize the information provided by this technique to guide the search process. In this work, we attempt to address this research gap by considering the case study of the Linear Ordering Problem (LOP). Based on the Fourier transform, we propose an instance decomposition strategy that divides any LOP instance into the sum of two LOP instances associated with a P and an NP-Hard optimization problem. By linearly aggregating the instances obtained from the decomposition, it is possible to create artificial instances with modified proportions of the P and NP-Hard components. Conducted experiments show that increasing the weight of the P component leads to a less rugged fitness landscape suitable for local search-based optimization. We take advantage of this phenomenon by presenting a new meta-heuristic algorithm called P-Descent Search (PDS). The proposed method, first, optimizes a surrogate instance with a high proportion of the P component, and then, gradually increases the weight of the NP-Hard component until the original instance is reached. The multi-start version of PDS shows a promising and predictable performance that appears to be correlated to specific characteristics of the problem, which could open the door to an automatic tuning of its hyper-parameters.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-28"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00368","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Fourier transform over finite groups has proved to be a useful tool for analyzing combinatorial optimization problems. However, few heuristic and meta-heuristic algorithms have been proposed in the literature that utilize the information provided by this technique to guide the search process. In this work, we attempt to address this research gap by considering the case study of the Linear Ordering Problem (LOP). Based on the Fourier transform, we propose an instance decomposition strategy that divides any LOP instance into the sum of two LOP instances associated with a P and an NP-Hard optimization problem. By linearly aggregating the instances obtained from the decomposition, it is possible to create artificial instances with modified proportions of the P and NP-Hard components. Conducted experiments show that increasing the weight of the P component leads to a less rugged fitness landscape suitable for local search-based optimization. We take advantage of this phenomenon by presenting a new meta-heuristic algorithm called P-Descent Search (PDS). The proposed method, first, optimizes a surrogate instance with a high proportion of the P component, and then, gradually increases the weight of the NP-Hard component until the original instance is reached. The multi-start version of PDS shows a promising and predictable performance that appears to be correlated to specific characteristics of the problem, which could open the door to an automatic tuning of its hyper-parameters.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.