以低维标度化函数替代物为指导的大规模多目标进化算法

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haoran Gu, Handing Wang, Cheng He, Bo Yuan, Yaochu Jin
{"title":"以低维标度化函数替代物为指导的大规模多目标进化算法","authors":"Haoran Gu, Handing Wang, Cheng He, Bo Yuan, Yaochu Jin","doi":"10.1162/evco_a_00354","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, computationally intensive multiobjective optimization problems have been efficiently solved by surrogate-assisted multiobjective evolutionary algorithms. However, most of those algorithms can only handle no more than 200 decision variables. As the number of decision variables increases further, unreliable surrogate models will result in a dramatic deterioration of their performance, which makes large-scale expensive multiobjective optimization challenging. To address this challenge, we develop a large-scale multiobjective evolutionary algorithm guided by low-dimensional surrogate models of scalarization functions. The proposed algorithm (termed LDS-AF) reduces the dimension of the original decision space based on principal component analysis, and then directly approximates the scalarization functions in a decompositionbased multiobjective evolutionary algorithm. With the help of a two-stage modeling strategy and convergence control strategy, LDS-AF can keep a good balance between convergence and diversity, and achieve a promising performance without being trapped in a local optimum prematurely. The experimental results on a set of test instances have demonstrated its superiority over eight state-of-the-art algorithms on multiobjective optimization problems with up to 1000 decision variables using only 500 real function evaluations.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-25"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Multiobjective Evolutionary Algorithm Guided by Low-Dimensional Surrogates of Scalarization Functions.\",\"authors\":\"Haoran Gu, Handing Wang, Cheng He, Bo Yuan, Yaochu Jin\",\"doi\":\"10.1162/evco_a_00354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, computationally intensive multiobjective optimization problems have been efficiently solved by surrogate-assisted multiobjective evolutionary algorithms. However, most of those algorithms can only handle no more than 200 decision variables. As the number of decision variables increases further, unreliable surrogate models will result in a dramatic deterioration of their performance, which makes large-scale expensive multiobjective optimization challenging. To address this challenge, we develop a large-scale multiobjective evolutionary algorithm guided by low-dimensional surrogate models of scalarization functions. The proposed algorithm (termed LDS-AF) reduces the dimension of the original decision space based on principal component analysis, and then directly approximates the scalarization functions in a decompositionbased multiobjective evolutionary algorithm. With the help of a two-stage modeling strategy and convergence control strategy, LDS-AF can keep a good balance between convergence and diversity, and achieve a promising performance without being trapped in a local optimum prematurely. The experimental results on a set of test instances have demonstrated its superiority over eight state-of-the-art algorithms on multiobjective optimization problems with up to 1000 decision variables using only 500 real function evaluations.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00354\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00354","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,计算密集型多目标优化问题已通过代理辅助多目标进化算法得到有效解决。然而,这些算法大多只能处理不超过 200 个决策变量。随着决策变量数量的进一步增加,不可靠的代用模型将导致其性能急剧下降,从而使大规模昂贵的多目标优化面临挑战。为了应对这一挑战,我们开发了一种以标量化函数的低维代理模型为指导的大规模多目标进化算法。所提出的算法(称为 LDS-AF)基于主成分分析降低了原始决策空间的维度,然后在基于分解的多目标进化算法中直接逼近标量化函数。借助两阶段建模策略和收敛控制策略,LDS-AF 可以在收敛性和多样性之间保持良好的平衡,并在不过早陷入局部最优的情况下取得可喜的性能。在一组测试实例上的实验结果表明,在多达 1000 个决策变量的多目标优化问题上,LDS-AF 只用了 500 次实际函数评估,就优于八种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Multiobjective Evolutionary Algorithm Guided by Low-Dimensional Surrogates of Scalarization Functions.

Recently, computationally intensive multiobjective optimization problems have been efficiently solved by surrogate-assisted multiobjective evolutionary algorithms. However, most of those algorithms can only handle no more than 200 decision variables. As the number of decision variables increases further, unreliable surrogate models will result in a dramatic deterioration of their performance, which makes large-scale expensive multiobjective optimization challenging. To address this challenge, we develop a large-scale multiobjective evolutionary algorithm guided by low-dimensional surrogate models of scalarization functions. The proposed algorithm (termed LDS-AF) reduces the dimension of the original decision space based on principal component analysis, and then directly approximates the scalarization functions in a decompositionbased multiobjective evolutionary algorithm. With the help of a two-stage modeling strategy and convergence control strategy, LDS-AF can keep a good balance between convergence and diversity, and achieve a promising performance without being trapped in a local optimum prematurely. The experimental results on a set of test instances have demonstrated its superiority over eight state-of-the-art algorithms on multiobjective optimization problems with up to 1000 decision variables using only 500 real function evaluations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信