Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single-Objective and Multiobjective Continuous Optimization Problems.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Moritz Vinzent Seiler, Pascal Kerschke, Heike Trautmann
{"title":"Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single-Objective and Multiobjective Continuous Optimization Problems.","authors":"Moritz Vinzent Seiler, Pascal Kerschke, Heike Trautmann","doi":"10.1162/evco_a_00372","DOIUrl":null,"url":null,"abstract":"<p><p>In many recent works, the potential of Exploratory Landscape Analysis (ELA) features to numerically characterize single-objective continuous optimization problems has been demonstrated. These numerical features provide the input for all kinds of machine learning tasks in the domain of continuous optimization problems, ranging, i.a., from High-level Property Prediction to Automated Algorithm Selection and Automated Algorithm Configuration. Without ELA features, analyzing and understanding the characteristics of single-objective continuous optimization problems is-to the best of our knowledge-very limited. Yet, despite their usefulness, as demonstrated in several past works, ELA features suffer from several drawbacks. These include, in particular, (1) a strong correlation between multiple features, as well as (2) its very limited applicability to multiobjective continuous optimization problems. As a remedy, recent works proposed deep learning-based approaches as alternatives to ELA. In these works, among others point-cloud transformers were used to characterize an optimization problem's fitness landscape. However, these approaches require a large amount of labeled training data. Within this work, we propose a hybrid approach, Deep-ELA, which combines (the benefits of) deep learning and ELA features. We pre-trained four transformers on millions of randomly generated optimization problems to learn deep representations of the landscapes of continuous single- and multiobjective optimization problems. Our proposed framework can either be used out-of-the-box for analyzing single- and multi-objective continuous optimization problems, or subsequently fine-tuned to various tasks focusing on algorithm behavior and problem understanding.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-29"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00372","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In many recent works, the potential of Exploratory Landscape Analysis (ELA) features to numerically characterize single-objective continuous optimization problems has been demonstrated. These numerical features provide the input for all kinds of machine learning tasks in the domain of continuous optimization problems, ranging, i.a., from High-level Property Prediction to Automated Algorithm Selection and Automated Algorithm Configuration. Without ELA features, analyzing and understanding the characteristics of single-objective continuous optimization problems is-to the best of our knowledge-very limited. Yet, despite their usefulness, as demonstrated in several past works, ELA features suffer from several drawbacks. These include, in particular, (1) a strong correlation between multiple features, as well as (2) its very limited applicability to multiobjective continuous optimization problems. As a remedy, recent works proposed deep learning-based approaches as alternatives to ELA. In these works, among others point-cloud transformers were used to characterize an optimization problem's fitness landscape. However, these approaches require a large amount of labeled training data. Within this work, we propose a hybrid approach, Deep-ELA, which combines (the benefits of) deep learning and ELA features. We pre-trained four transformers on millions of randomly generated optimization problems to learn deep representations of the landscapes of continuous single- and multiobjective optimization problems. Our proposed framework can either be used out-of-the-box for analyzing single- and multi-objective continuous optimization problems, or subsequently fine-tuned to various tasks focusing on algorithm behavior and problem understanding.

基于自监督预训练变压器的单目标和多目标连续优化问题深度探索性景观分析。
在最近的许多工作中,探索性景观分析(ELA)特征在数值上表征单目标连续优化问题的潜力已经得到证明。这些数值特征为连续优化问题领域的各种机器学习任务提供了输入,例如,从高级属性预测到自动算法选择和自动算法配置。如果没有ELA特征,就我们所知,分析和理解单目标连续优化问题的特征是非常有限的。然而,尽管它们很有用,正如在过去的几篇文章中所展示的那样,ELA特性仍然存在一些缺点。这包括,特别是,(1)多个特征之间的强相关性,以及(2)它对多目标连续优化问题的非常有限的适用性。作为补救措施,最近的研究提出了基于深度学习的方法作为ELA的替代方案。在这些工作中,除其他外,点云变压器被用来表征优化问题的适应度景观。然而,这些方法需要大量的标记训练数据。在这项工作中,我们提出了一种混合方法,deep -ELA,它结合了深度学习和ELA特征的(好处)。我们在数百万个随机生成的优化问题上预训练了四个变压器,以学习连续单目标和多目标优化问题的深度表示。我们提出的框架既可以用于开箱即用的分析单目标和多目标连续优化问题,也可以随后微调到专注于算法行为和问题理解的各种任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信