Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aneta Neumann, Frank Neumann
{"title":"Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms.","authors":"Aneta Neumann, Frank Neumann","doi":"10.1162/evco_a_00360","DOIUrl":null,"url":null,"abstract":"<p><p>Many real-world optimization problems can be stated in terms of submodular functions. Furthermore, these real-world problems often involve uncertainties which may lead to the violation of given constraints. A lot of evolutionary multi-objective algorithms following the Pareto optimization approach have recently been analyzed and applied to submodular problems with different types of constraints. We present a first runtime analysis of evolutionary multi-objective algorithms based on Pareto optimization for chance-constrained submodular functions. Here the constraint involves stochastic components and the constraint can only be violated with a small probability of α. We investigate the classical GSEMO algorithm for two different bi-objective formulations using tail bounds to determine the feasibility of solutions. We show that the algorithm GSEMO obtains the same worst case performance guarantees for monotone submodular functions as recently analyzed greedy algorithms for the case of uniform IID weights and uniformly distributed weights with the same dispersion when using the appropriate bi-objective formulation. As part of our investigations, we also point out situations where the use of tail bounds in the first bi-objective formulation can prevent GSEMO from obtaining good solutions in the case of uniformly distributed weights with the same dispersion if the objective function is submodular but non-monotone due to a single element impacting monotonicity. Furthermore, we investigate the behavior of the evolutionary multi-objective algorithms GSEMO, NSGA-II and SPEA2 on different submodular chance-constrained network problems. Our experimental results show that the use of evolutionary multi-objective algorithms leads to significant performance improvements compared to state-of-the-art greedy algorithms for submodular optimization.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00360","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-world optimization problems can be stated in terms of submodular functions. Furthermore, these real-world problems often involve uncertainties which may lead to the violation of given constraints. A lot of evolutionary multi-objective algorithms following the Pareto optimization approach have recently been analyzed and applied to submodular problems with different types of constraints. We present a first runtime analysis of evolutionary multi-objective algorithms based on Pareto optimization for chance-constrained submodular functions. Here the constraint involves stochastic components and the constraint can only be violated with a small probability of α. We investigate the classical GSEMO algorithm for two different bi-objective formulations using tail bounds to determine the feasibility of solutions. We show that the algorithm GSEMO obtains the same worst case performance guarantees for monotone submodular functions as recently analyzed greedy algorithms for the case of uniform IID weights and uniformly distributed weights with the same dispersion when using the appropriate bi-objective formulation. As part of our investigations, we also point out situations where the use of tail bounds in the first bi-objective formulation can prevent GSEMO from obtaining good solutions in the case of uniformly distributed weights with the same dispersion if the objective function is submodular but non-monotone due to a single element impacting monotonicity. Furthermore, we investigate the behavior of the evolutionary multi-objective algorithms GSEMO, NSGA-II and SPEA2 on different submodular chance-constrained network problems. Our experimental results show that the use of evolutionary multi-objective algorithms leads to significant performance improvements compared to state-of-the-art greedy algorithms for submodular optimization.

利用进化多目标算法优化单调机会受限子模函数
现实世界中的许多优化问题都可以用亚模态函数来表述。此外,这些现实世界的问题往往涉及不确定性,可能导致违反给定的约束条件。最近,很多采用帕累托优化方法的进化多目标算法被分析并应用于具有不同类型约束条件的亚模态问题。我们首次对基于帕累托优化的进化多目标算法进行了运行分析,以解决偶然性约束的亚模态函数问题。这里的约束涉及随机成分,并且约束只能以很小的概率 α 违反。我们针对两种不同的双目标公式研究了经典的 GSEMO 算法,利用尾边界来确定解的可行性。我们发现,在使用适当的双目标公式时,对于单调亚模态函数,GSEMO 算法可以获得与最近分析过的贪婪算法相同的最坏情况性能保证,即均匀 IID 权重和具有相同分散性的均匀分布权重。作为研究的一部分,我们还指出,如果目标函数是亚模态的,但由于单个元素影响了单调性,在具有相同离散度的均匀分布权重情况下,在第一个双目标公式中使用尾边界可能会阻止 GSEMO 获得良好的解决方案。此外,我们还研究了进化多目标算法 GSEMO、NSGA-II 和 SPEA2 在不同的亚模态偶然受限网络问题上的表现。实验结果表明,与最先进的子模块优化贪婪算法相比,使用进化多目标算法能显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信