Finite Fields and Their Applications最新文献

筛选
英文 中文
On the automorphism group of a family of maximal curves not covered by the Hermitian curve 论赫米曲线未覆盖的最大曲线族的自变群
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-26 DOI: 10.1016/j.ffa.2024.102498
Maria Montanucci , Guilherme Tizziotti , Giovanni Zini
{"title":"On the automorphism group of a family of maximal curves not covered by the Hermitian curve","authors":"Maria Montanucci ,&nbsp;Guilherme Tizziotti ,&nbsp;Giovanni Zini","doi":"10.1016/j.ffa.2024.102498","DOIUrl":"10.1016/j.ffa.2024.102498","url":null,"abstract":"<div><p>In this paper we compute the automorphism group of the curves <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> introduced in Tafazolian et al. <span><span>[27]</span></span> as new examples of maximal curves which cannot be covered by the Hermitian curve. They arise as subcovers of the first generalized GK curve (GGS curve). As a result, a new characterization of the GK curve, as a member of this family, is obtained.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102498"},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The subspace structure of maximum cliques in pseudo-Paley graphs from unions of cyclotomic classes 从循环类的联合看伪帕利图中最大小群的子空间结构
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-14 DOI: 10.1016/j.ffa.2024.102492
Shamil Asgarli , Chi Hoi Yip
{"title":"The subspace structure of maximum cliques in pseudo-Paley graphs from unions of cyclotomic classes","authors":"Shamil Asgarli ,&nbsp;Chi Hoi Yip","doi":"10.1016/j.ffa.2024.102492","DOIUrl":"10.1016/j.ffa.2024.102492","url":null,"abstract":"<div><p>Blokhuis showed that all maximum cliques in Paley graphs of square order have a subfield structure. Recently, it has been shown that in Peisert-type graphs, all maximum cliques are affine subspaces, and yet some maximum cliques do not arise from a subfield. In this paper, we investigate the existence of a clique of size <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span> with a subspace structure in pseudo-Paley graphs of order <em>q</em> from unions of semi-primitive cyclotomic classes. We show that such a clique must have an equal contribution from each cyclotomic class and that most such pseudo-Paley graphs do not admit such cliques, suggesting that the Delsarte bound <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span> on the clique number can be improved in general. We also prove that generalized Peisert graphs are not isomorphic to Paley graphs or Peisert graphs, confirming a conjecture of Mullin.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102492"},"PeriodicalIF":1.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bruen chains 关于布鲁恩链条
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-14 DOI: 10.1016/j.ffa.2024.102491
John Bamberg , Jesse Lansdown , Geertrui Van de Voorde
{"title":"On Bruen chains","authors":"John Bamberg ,&nbsp;Jesse Lansdown ,&nbsp;Geertrui Van de Voorde","doi":"10.1016/j.ffa.2024.102491","DOIUrl":"10.1016/j.ffa.2024.102491","url":null,"abstract":"<div><p>It is known that a Bruen chain of the three-dimensional projective space <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> exists for every odd prime power <em>q</em> at most 37, except for <span><math><mi>q</mi><mo>=</mo><mn>29</mn></math></span>. It was shown by Cardinali et al. (2005) that Bruen chains do not exist for <span><math><mn>41</mn><mo>⩽</mo><mi>q</mi><mo>⩽</mo><mn>49</mn></math></span>. We develop a model, based on finite fields, which allows us to extend this result to <span><math><mn>41</mn><mo>⩽</mo><mi>q</mi><mo>⩽</mo><mn>97</mn></math></span>, thereby adding more evidence to the conjecture that Bruen chains do not exist for <span><math><mi>q</mi><mo>&gt;</mo><mn>37</mn></math></span>. Furthermore, we show that Bruen chains can be realised precisely as the <span><math><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>-cliques of a two related, yet distinct, undirected simple graphs.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102491"},"PeriodicalIF":1.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724001308/pdfft?md5=731484f2ebf31e1586fb859e032c078c&pid=1-s2.0-S1071579724001308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of concatenative complete complementary codes for CCC-CDMA via specific sequences and extended Boolean functions 通过特定序列和扩展布尔函数为 CCC-CDMA 设计串联完整互补码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-13 DOI: 10.1016/j.ffa.2024.102489
Rong Luo , Bingsheng Shen , Yang Yang , Zhengchun Zhou
{"title":"Design of concatenative complete complementary codes for CCC-CDMA via specific sequences and extended Boolean functions","authors":"Rong Luo ,&nbsp;Bingsheng Shen ,&nbsp;Yang Yang ,&nbsp;Zhengchun Zhou","doi":"10.1016/j.ffa.2024.102489","DOIUrl":"10.1016/j.ffa.2024.102489","url":null,"abstract":"<div><p>A complete complementary code (CCC) consists of <em>M</em> sequence sets with size <em>M</em>. The sum of the auto-correlation functions of each sequence set is an impulse function, and the sum of cross-correlation functions of the different sequence sets is equal to zero. Thanks to their excellent correlation, CCCs received extensive use in engineering. In addition, they are strongly connected to orthogonal matrices. In some application scenarios, additional requirements are made for CCCs, such as recently proposed for concatenative CCC (CCCC) division multiple access (CCC-CDMA) technologies. In fact, CCCCs are a special kind of CCCs which requires that each sequence set in CCC be concatenated to form a zero-correlation-zone (ZCZ) sequence set. However, this requirement is challenging, and the literature is thin since there is only one construction in this context. We propose to go beyond the literature through this contribution to reduce the gap between their interest and our limited knowledge of CCCCs. This paper will employ novel methods for designing CCCCs and precisely derive two constructions of these objects. The first is based on perfect cross Z-complementary pair and Hadamard matrices, and the second relies on extended Boolean functions. Specifically, we highlight that optimal and asymptotic optimal CCCCs could be obtained through the proposed constructions. Besides, we shall present a comparison analysis with former structures in the literature and examples to illustrate our main results.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102489"},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designs with a simple automorphism group 具有简单自变群的设计
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-09 DOI: 10.1016/j.ffa.2024.102488
Alessandro Montinaro , Yanwei Zhao , Zhilin Zhang , Shenglin Zhou
{"title":"Designs with a simple automorphism group","authors":"Alessandro Montinaro ,&nbsp;Yanwei Zhao ,&nbsp;Zhilin Zhang ,&nbsp;Shenglin Zhou","doi":"10.1016/j.ffa.2024.102488","DOIUrl":"10.1016/j.ffa.2024.102488","url":null,"abstract":"<div><p>The classification of the 2-designs with <span><math><mi>λ</mi><mo>=</mo><mn>2</mn></math></span> admitting a flag-transitive automorphism groups with socle <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is completed by settling the two open cases in <span><span>[2]</span></span>. The result is achieved by using conics and hyperovals of <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102488"},"PeriodicalIF":1.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized point configurations in Fqd Fqd 中的广义点配置
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102472
Paige Bright, Xinyu Fang, Barrett Heritage, Alex Iosevich, Tingsong Jiang, Hans Parshall, Maxwell Sun
{"title":"Generalized point configurations in Fqd","authors":"Paige Bright,&nbsp;Xinyu Fang,&nbsp;Barrett Heritage,&nbsp;Alex Iosevich,&nbsp;Tingsong Jiang,&nbsp;Hans Parshall,&nbsp;Maxwell Sun","doi":"10.1016/j.ffa.2024.102472","DOIUrl":"10.1016/j.ffa.2024.102472","url":null,"abstract":"<div><p>In this paper, we generalize <span><span>[6]</span></span>, <span><span>[1]</span></span>, <span><span>[5]</span></span> and <span><span>[3]</span></span> by allowing the <em>distance</em> between two points in a finite field vector space to be defined by a general non-degenerate bilinear form or quadratic form. We prove the same bounds on the sizes of large subsets of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> for them to contain distance graphs with a given maximal vertex degree, under the more general notion of distance. We also prove the same results for embedding paths, trees and cycles in the general setting.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102472"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primality proving using elliptic curves with complex multiplication by imaginary quadratic fields of class number three 利用椭圆曲线与三类虚二次域的复乘法证明初等性
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102490
Hiroshi Onuki
{"title":"Primality proving using elliptic curves with complex multiplication by imaginary quadratic fields of class number three","authors":"Hiroshi Onuki","doi":"10.1016/j.ffa.2024.102490","DOIUrl":"10.1016/j.ffa.2024.102490","url":null,"abstract":"<div><p>In 2015, Abatzoglou, Silverberg, Sutherland, and Wong presented a framework for primality proving algorithms for special sequences of integers using an elliptic curve with complex multiplication. They applied their framework to obtain algorithms for elliptic curves with complex multiplication by imaginary quadratic field of class numbers one and two, but, they were not able to obtain primality proving algorithms in cases of higher class number. In this paper, we present a method to apply their framework to imaginary quadratic fields of class number three. In particular, our method provides a more efficient primality proving algorithm for special sequences of integers than the existing algorithms by using an imaginary quadratic field of class number three in which 2 splits. As an application, we give two special sequences of integers derived from <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>23</mn></mrow></msqrt><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>31</mn></mrow></msqrt><mo>)</mo></math></span>, which are all the imaginary quadratic fields of class number three in which 2 splits. Finally, we give a computational result for the primality of these sequences.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102490"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stable polynomials of degrees 2,3,4 关于 2、3、4 度的稳定多项式
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102474
Tong Lin, Qiang Wang
{"title":"On the stable polynomials of degrees 2,3,4","authors":"Tong Lin,&nbsp;Qiang Wang","doi":"10.1016/j.ffa.2024.102474","DOIUrl":"10.1016/j.ffa.2024.102474","url":null,"abstract":"<div><p>Let <em>q</em> be a prime power. For <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, we construct stable polynomials of the form <span><math><msup><mrow><mi>b</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>c</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo>)</mo><mo>+</mo><mi>d</mi></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> by Capelli's lemma. Moreover, when <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we improve a lower bound for the number of stable quadratic polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> due to Goméz-Pérez and Nicolás <span><span>[4]</span></span>. When <span><math><mi>m</mi><mo>=</mo><mn>3</mn></math></span>, we prove Ahmadi and Monsef-Shokri's conjecture <span><span>[2]</span></span> that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> is stable over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102474"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the computation of r-th roots in finite fields 关于有限域中 r 次根的计算
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-05 DOI: 10.1016/j.ffa.2024.102479
Gook Hwa Cho , Soonhak Kwon
{"title":"On the computation of r-th roots in finite fields","authors":"Gook Hwa Cho ,&nbsp;Soonhak Kwon","doi":"10.1016/j.ffa.2024.102479","DOIUrl":"10.1016/j.ffa.2024.102479","url":null,"abstract":"<div><p>Let <em>q</em> be a power of a prime such that <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>r</mi><mo>)</mo></math></span>. Let <em>c</em> be an <em>r</em>-th power residue over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, we present a new <em>r</em>-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>b</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>r</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>=</mo><mi>c</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>r</mi></math></span> requires only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>+</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> multiplications for <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span>. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102479"},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On linear representation, complexity and inversion of maps over finite fields 论有限域上映射的线性表示、复杂性和反演
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-08-05 DOI: 10.1016/j.ffa.2024.102475
Ramachandran Ananthraman , Virendra Sule
{"title":"On linear representation, complexity and inversion of maps over finite fields","authors":"Ramachandran Ananthraman ,&nbsp;Virendra Sule","doi":"10.1016/j.ffa.2024.102475","DOIUrl":"10.1016/j.ffa.2024.102475","url":null,"abstract":"<div><p>This paper defines a linear representation for nonlinear maps <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><mi>F</mi></math></span> is a finite field, in terms of matrices over <span><math><mi>F</mi></math></span>. This linear representation of the map <em>F</em> associates a unique number <em>N</em> and a unique matrix <em>M</em> in <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>N</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span>, called the Linear Complexity and the Linear Representation of <em>F</em> respectively, and shows that the compositional powers <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> are represented by matrix powers <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. It is shown that for a permutation map <em>F</em> with representation <em>M</em>, the inverse map has the linear representation <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. This framework of representation is extended to a parameterized family of maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mi>F</mi><mo>→</mo><mi>F</mi></math></span>, defined in terms of a parameter <span><math><mi>λ</mi><mo>∈</mo><mi>F</mi></math></span>, leading to the definition of an analogous linear complexity of the map <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and a parameter-dependent matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined over the univariate polynomial ring <span><math><mi>F</mi><mo>[</mo><mi>λ</mi><mo>]</mo></math></span>. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map <em>F</em>, and to the group generated by a finite number of permutation maps over <span><math><mi>F</mi></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102475"},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信