Finite Fields and Their Applications最新文献

筛选
英文 中文
Asymptotic distributions of the number of zeros of random polynomials in Hayes equivalence class over a finite field 有限域上 Hayes 等价类中随机多项式零点数的渐近分布
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-11-06 DOI: 10.1016/j.ffa.2024.102524
Zhicheng Gao
{"title":"Asymptotic distributions of the number of zeros of random polynomials in Hayes equivalence class over a finite field","authors":"Zhicheng Gao","doi":"10.1016/j.ffa.2024.102524","DOIUrl":"10.1016/j.ffa.2024.102524","url":null,"abstract":"<div><div>Hayes equivalence is defined on monic polynomials over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in terms of the prescribed leading coefficients and the residue classes modulo a given monic polynomial <em>Q</em>. We study the distribution of the number of zeros in a random polynomial over finite fields in a given Hayes equivalence class. It is well known that the number of distinct zeros of a random polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is asymptotically Poisson with mean 1. We show that this is also true for random polynomials in any given Hayes equivalence class. Asymptotic formulas are also given for the number of such polynomials when the degree of such polynomials is proportional to <em>q</em> and the degree of <em>Q</em> and the number of prescribed leading coefficients are bounded by <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span>. When <span><math><mi>Q</mi><mo>=</mo><mn>1</mn></math></span>, the problem is equivalent to the study of the distance distribution in Reed-Solomon codes. Our asymptotic formulas extend some earlier results and imply that all words for a large family of Reed-Solomon codes are ordinary, which further supports the well-known <em>Deep-Hole</em> Conjecture.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-polycyclic and skew quasi-polycyclic codes over Fq Fq 上的准多环码和偏斜准多环码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-31 DOI: 10.1016/j.ffa.2024.102536
Tushar Bag, Daniel Panario
{"title":"Quasi-polycyclic and skew quasi-polycyclic codes over Fq","authors":"Tushar Bag,&nbsp;Daniel Panario","doi":"10.1016/j.ffa.2024.102536","DOIUrl":"10.1016/j.ffa.2024.102536","url":null,"abstract":"<div><div>In this research, our focus is on investigating 1-generator right quasi-polycyclic (QPC) codes over fields. We provide a detailed description of how linear codes with substantial minimum distances can be constructed from QPC codes. We analyze dual QPC codes under various inner products and use them to construct quantum error-correcting codes. Furthermore, our research includes a dedicated section that delves into the area of skew quasi-polycyclic (SQPC) codes, investigating their properties and the role of generators in their construction. This section expands our study to encompass the intriguing area of SQPC codes, offering insights into the non-commutative version of QPC codes, their characteristics and generator structures. Our work deals with the structural properties of QPC, skew polycyclic and SQPC codes, shedding light on their potential for enhancing the field of coding theory.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-orthogonal cyclic codes with good parameters 具有良好参数的自正交循环码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-31 DOI: 10.1016/j.ffa.2024.102534
Jiayuan Zhang, Xiaoshan Kai, Ping Li
{"title":"Self-orthogonal cyclic codes with good parameters","authors":"Jiayuan Zhang,&nbsp;Xiaoshan Kai,&nbsp;Ping Li","doi":"10.1016/j.ffa.2024.102534","DOIUrl":"10.1016/j.ffa.2024.102534","url":null,"abstract":"<div><div>The construction of self-orthogonal codes is an interesting topic due to their wide applications in communication and cryptography. In this paper, we construct several families of self-orthogonal cyclic codes with length <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span>, where <span><math><mi>λ</mi><mo>|</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> is odd. It is proved that there exist <em>q</em>-ary self-orthogonal cyclic codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> for even prime power <em>q</em>, and <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> or <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> for odd prime power <em>q</em>, where <em>d</em> is significantly better than the square-root bound. These several families of self-orthogonal cyclic codes contain some optimal linear codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear codes from planar functions and related covering codes 来自平面函数的线性编码及相关覆盖编码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-31 DOI: 10.1016/j.ffa.2024.102535
Yanan Wu, Yanbin Pan
{"title":"Linear codes from planar functions and related covering codes","authors":"Yanan Wu,&nbsp;Yanbin Pan","doi":"10.1016/j.ffa.2024.102535","DOIUrl":"10.1016/j.ffa.2024.102535","url":null,"abstract":"<div><div>Linear codes with few weights have wide applications in consumer electronics, data storage system and secret sharing. In this paper, by virtue of planar functions, several infinite families of <em>l</em>-weight linear codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are constructed, where <em>l</em> can be any positive integer and <em>p</em> is a prime number. The weight distributions of these codes are determined completely by utilizing certain approach on exponential sums. Experiments show that some (almost) optimal codes in small dimensions can be produced from our results. Moreover, the related covering codes are also investigated.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvements of the Hasse-Weil-Serre bound over global function fields 全局函数域上哈塞-韦尔-塞雷约束的改进
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-31 DOI: 10.1016/j.ffa.2024.102538
Jinjoo Yoo , Yoonjin Lee
{"title":"Improvements of the Hasse-Weil-Serre bound over global function fields","authors":"Jinjoo Yoo ,&nbsp;Yoonjin Lee","doi":"10.1016/j.ffa.2024.102538","DOIUrl":"10.1016/j.ffa.2024.102538","url":null,"abstract":"<div><div>We improve the Hasse-Weil-Serre bound over a global function field <em>K</em> with relatively large genus in terms of the ramification behavior of the finite places and the infinite places for <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span>, where <em>k</em> is the rational function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span>. Furthermore, we improve the Hasse-Weil-Serre bound over a global function field <em>K</em> in terms of the defining equation of <em>K</em>. As an application of our main result, we apply our bound to some well-known extensions: <em>Kummer extensions</em> and <em>elementary abelian p-extensions</em>, where <em>p</em> is the characteristic of <em>k</em>. In fact, elementary abelian <em>p</em>-extensions include <em>Artin-Schreier type extensions</em>, <em>Artin-Schreier extensions</em>, and <em>Suzuki function fields</em>. Moreover, we present infinite families of global function fields for Kummer extensions, Artin-Schreier type extensions, and elementary abelian <em>p</em>-extensions but not Artin-Schreier type extensions, which meet our improved bound: our bound is a sharp bound in these families. We also compare our new bound with some known data given in <span><span>manypoints.org</span><svg><path></path></svg></span>, which is the database on the rational points of algebraic curves. This comparison shows a meaningful improvement of our results on the bound of the number of the rational places of <em>K</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the cyclotomic field Q(e2πi/p) and Zhi-Wei Sun's conjecture on det Mp 关于回旋场 Q(e2πi/p) 和孙志伟关于 det Mp 的猜想
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-31 DOI: 10.1016/j.ffa.2024.102533
Li-Yuan Wang , Hai-Liang Wu
{"title":"On the cyclotomic field Q(e2πi/p) and Zhi-Wei Sun's conjecture on det Mp","authors":"Li-Yuan Wang ,&nbsp;Hai-Liang Wu","doi":"10.1016/j.ffa.2024.102533","DOIUrl":"10.1016/j.ffa.2024.102533","url":null,"abstract":"<div><div>In 2019, Zhi-Wei Sun posed an interesting conjecture on certain determinants with Legendre symbol entries. In this paper, by using the arithmetic properties of <em>p</em>-th cyclotomic field and the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, we confirm this conjecture.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal quinary cyclic codes with three zeros 有三个零的最优二进制循环码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-30 DOI: 10.1016/j.ffa.2024.102537
Jinmei Fan , Xiangyong Zeng
{"title":"Optimal quinary cyclic codes with three zeros","authors":"Jinmei Fan ,&nbsp;Xiangyong Zeng","doi":"10.1016/j.ffa.2024.102537","DOIUrl":"10.1016/j.ffa.2024.102537","url":null,"abstract":"<div><div>Optimal cyclic codes have received a lot of attention and much progress has been made. However, little is known about optimal quinary cyclic codes. In this paper, by analyzing irreducible factors of certain polynomials over finite fields and utilizing multivariate method, three classes of optimal quinary cyclic codes with parameters <span><math><mo>[</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span> and three zeros are presented.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On certain maximal curves related to Chebyshev polynomials 论与切比雪夫多项式有关的某些最大曲线
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-23 DOI: 10.1016/j.ffa.2024.102521
Guilherme Dias , Saeed Tafazolian , Jaap Top
{"title":"On certain maximal curves related to Chebyshev polynomials","authors":"Guilherme Dias ,&nbsp;Saeed Tafazolian ,&nbsp;Jaap Top","doi":"10.1016/j.ffa.2024.102521","DOIUrl":"10.1016/j.ffa.2024.102521","url":null,"abstract":"<div><div>This paper studies curves defined using Chebyshev polynomials <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> over finite fields. Given the hyperelliptic curve <span><math><mi>C</mi></math></span> corresponding to the equation <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, the prime powers <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span> are determined such that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is separable and <span><math><mi>C</mi></math></span> is maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This extends a result from <span><span>[30]</span></span> that treats the special cases <span><math><mn>2</mn><mo>|</mo><mi>d</mi></math></span> as well as <em>d</em> a prime number. In particular a proof of <span><span>[30, Conjecture 1.7]</span></span> is presented. Moreover, we give a complete description of the pairs <span><math><mo>(</mo><mi>d</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that the projective closure of the plane curve defined by <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> is smooth and maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>.</div><div>A number of analogous maximality results are discussed.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New constructions of permutation polynomials of the form x+γTrqq2(h(x)) over finite fields with even characteristic 偶特征有限域上 x+γTrqq2(h(x)) 形式置换多项式的新构造
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-23 DOI: 10.1016/j.ffa.2024.102522
Sha Jiang, Mu Yuan, Kangquan Li, Longjiang Qu
{"title":"New constructions of permutation polynomials of the form x+γTrqq2(h(x)) over finite fields with even characteristic","authors":"Sha Jiang,&nbsp;Mu Yuan,&nbsp;Kangquan Li,&nbsp;Longjiang Qu","doi":"10.1016/j.ffa.2024.102522","DOIUrl":"10.1016/j.ffa.2024.102522","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Permutation polynomials over finite fields are widely used in cryptography, coding theory, and combinatorial design. Particularly, permutation polynomials of the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Tr&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; have been studied by many researchers and applied to lift minimal blocking sets. In this paper, we further investigate permutation polynomials of the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Tr&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; over finite fields with even characteristic. On the one hand, guided by the idea of choosing functions &lt;em&gt;h&lt;/em&gt; with a low &lt;em&gt;q&lt;/em&gt;-degree, we completely determine the sufficient and necessary conditions of &lt;em&gt;γ&lt;/em&gt; for six classes of polynomials of the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Tr&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) to be permutations. These results determine the sizes of directions of these six functions, which is generally difficult. On the other hand, we slightly generalize the above idea and construct other six classes of permutation polynomials of the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Tr&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An approach to normal polynomials through symmetrization and symmetric reduction 通过对称化和对称还原实现正多项式的方法
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-10-23 DOI: 10.1016/j.ffa.2024.102525
Darien Connolly , Calvin George , Xiang-dong Hou , Adam Madro , Vincenzo Pallozzi Lavorante
{"title":"An approach to normal polynomials through symmetrization and symmetric reduction","authors":"Darien Connolly ,&nbsp;Calvin George ,&nbsp;Xiang-dong Hou ,&nbsp;Adam Madro ,&nbsp;Vincenzo Pallozzi Lavorante","doi":"10.1016/j.ffa.2024.102525","DOIUrl":"10.1016/j.ffa.2024.102525","url":null,"abstract":"<div><div>An irreducible polynomial <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> of degree <em>n</em> is <em>normal</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> if and only if its roots <span><math><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup></math></span> satisfy the condition <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> circulant determinant. By finding a suitable <em>symmetrization</em> of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (A multiple of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which is symmetric in <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>), we obtain a condition on the coefficients of <em>f</em> that is sufficient for <em>f</em> to be normal. This approach works well for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span> but encounters computational difficulties when <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>. In the present paper, we consider irreducible polynomials of the form <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and 7, by an indirect method, we are able to find simple conditions on <em>a</em> that are sufficient for <em>f</em> to be normal. In a more general context, we also explore the normal polynomials of a finite Galois extension through the irreducible characters of the Galois group.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信