Finite Fields and Their Applications最新文献

筛选
英文 中文
Linear codes with few weights from vectorial dual-bent functions 向量双弯曲函数的少权线性码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-28 DOI: 10.1016/j.ffa.2025.102660
Zhicheng Wang , Qiang Wang , Shudi Yang
{"title":"Linear codes with few weights from vectorial dual-bent functions","authors":"Zhicheng Wang ,&nbsp;Qiang Wang ,&nbsp;Shudi Yang","doi":"10.1016/j.ffa.2025.102660","DOIUrl":"10.1016/j.ffa.2025.102660","url":null,"abstract":"<div><div>Linear codes with few weights have wide applications in secret sharing, authentication codes, strongly regular graphs and association schemes. In this paper, we present linear codes from vectorial dual-bent functions and permutation polynomials, such that their parameters and weight distributions can be explicitly determined. In particular, some of them are three-weight optimal or almost optimal codes. As applications, we extend these codes to construct self-orthogonal codes and show the existence of asymmetric quantum codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102660"},"PeriodicalIF":1.2,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shortest-path and antichain metrics 最短路径和反链度量
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-26 DOI: 10.1016/j.ffa.2025.102658
Mahir Bilen Can, Dillon Montero
{"title":"Shortest-path and antichain metrics","authors":"Mahir Bilen Can,&nbsp;Dillon Montero","doi":"10.1016/j.ffa.2025.102658","DOIUrl":"10.1016/j.ffa.2025.102658","url":null,"abstract":"<div><div>In this paper, we introduce two new metrics for error-correcting codes that extend the classical Hamming metric. The first, called the shortest-path metric, coincides with the Niederreiter-Rosenbloom-Tsfasman (NRT) metric when the underlying poset is a disjoint union of equal-length chains. The second, called the antichain metric, is shown to align with the <em>b</em>-symbol Hamming weight under the same poset structure. We explore analogs of maximum distance separable (MDS) codes and perfect codes for both metrics and determine the corresponding weight enumerator polynomials. Additionally, we establish criteria for when the antichain metric yields one-weight perfect codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102658"},"PeriodicalIF":1.2,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distribution of prime independent multiplicative functions over function fields 函数域上素数无关的乘法函数的分布
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-20 DOI: 10.1016/j.ffa.2025.102657
Matilde Lalín , Olha Zhur
{"title":"The distribution of prime independent multiplicative functions over function fields","authors":"Matilde Lalín ,&nbsp;Olha Zhur","doi":"10.1016/j.ffa.2025.102657","DOIUrl":"10.1016/j.ffa.2025.102657","url":null,"abstract":"<div><div>We consider the family of multiplicative functions of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> with the property that the value at a power of an irreducible polynomial depends only on the exponent, but does not depend on the polynomial or its degree. We study variances of such functions in various regimes, relating them to variances of the divisor function <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. We examine different settings that can be related to distributions over the ensembles of unitary matrices, symplectic matrices, and orthogonal matrices as in the works of <span><span>[18]</span></span>, <span><span>[19]</span></span>, <span><span>[20]</span></span>. While most questions give very similar answers as the distributions of the divisor function, some of the symplectic problems, dealing with quadratic characters, are different and vary according to the values of the function at the square of the primes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102657"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing the minimum distance of the C(O3,6) polar orthogonal Grassmann code with elementary methods 用初等方法计算C(o3,6)极正交格拉斯曼码的最小距离
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-13 DOI: 10.1016/j.ffa.2025.102656
Sarah Gregory , Fernando Piñero González , Doel Rivera–Laboy , Lani Southern
{"title":"Computing the minimum distance of the C(O3,6) polar orthogonal Grassmann code with elementary methods","authors":"Sarah Gregory ,&nbsp;Fernando Piñero González ,&nbsp;Doel Rivera–Laboy ,&nbsp;Lani Southern","doi":"10.1016/j.ffa.2025.102656","DOIUrl":"10.1016/j.ffa.2025.102656","url":null,"abstract":"<div><div>The polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is the linear code associated to the polar orthogonal Grassmannian subvariety of the Grassmannian. The variety <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> is the Grassmannian of 3-spaces contained in a hyperbolic quadric in <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. In this manuscript we prove that the minimum distance of the polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <em>q</em> odd and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for <em>q</em> even. We also prove that the minimum distance of <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>8</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> when <em>q</em> is even. Our technique is based on partitioning <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> into different sets such that on each partition the code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is identified with evaluations of determinants of skew–symmetric matrices. Our bounds come from elementary algebraic methods counting the zeroes of particular classes of polynomials. The techniques presented in this paper may be adapted for other polar Grassmannians.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102656"},"PeriodicalIF":1.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143940684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple matrix cryptosystem is not broken by Liu's attack 简单矩阵密码系统没有被刘的攻击所破解
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-10 DOI: 10.1016/j.ffa.2025.102643
Lih-Chung Wang, Yen-Liang Kuan, Po-En Tseng, Chun-Yen Chou
{"title":"Simple matrix cryptosystem is not broken by Liu's attack","authors":"Lih-Chung Wang,&nbsp;Yen-Liang Kuan,&nbsp;Po-En Tseng,&nbsp;Chun-Yen Chou","doi":"10.1016/j.ffa.2025.102643","DOIUrl":"10.1016/j.ffa.2025.102643","url":null,"abstract":"<div><div>At PQCrypto2013, Tao et al. proposed a new multivariate public key cryptosystem for encryption called Simple Matrix (or ABC) encryption scheme. In 2018, Liu et al. proposed a key recovery attack on ABC scheme with claimed complexity of <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>4</mn><mi>w</mi></mrow></msup><mo>)</mo></mrow></math></span>, where <em>s</em> is the size of the <span><math><mi>s</mi><mo>×</mo><mi>s</mi></math></span> square matrices in the scheme, <span><math><mi>w</mi><mo>=</mo><mn>3</mn></math></span> in the usual Gaussian elimination algorithm and <span><math><mi>w</mi><mo>=</mo><mn>2.3776</mn></math></span> in improved scheme. In this paper, we show that Liu's attack only works for the case <span><math><mi>s</mi><mo>=</mo><mn>2</mn></math></span> of ABC scheme which means that Liu's attack doesn't break ABC scheme.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102643"},"PeriodicalIF":1.2,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143928788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Several new classes of p-ary weakly regular plateaued functions and minimal codes with several weights 几类新的p元弱正则平台函数和具有多个权值的最小码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-09 DOI: 10.1016/j.ffa.2025.102644
Wengang Jin, Kangquan Li, Longjiang Qu
{"title":"Several new classes of p-ary weakly regular plateaued functions and minimal codes with several weights","authors":"Wengang Jin,&nbsp;Kangquan Li,&nbsp;Longjiang Qu","doi":"10.1016/j.ffa.2025.102644","DOIUrl":"10.1016/j.ffa.2025.102644","url":null,"abstract":"<div><div>Plateaued functions, including bent functions, are crucial in cryptography due to their possession of a range of desirable cryptographic properties. Weakly regular plateaued functions can also be employed in many domains. In particular, they have been widely used in designing good linear codes for several applications (such as secret sharing and two-party computation), association schemes, and strongly regular graphs. This paper is devoted to weakly regular plateaued functions, whose objectives are twofold. First, we aim to generate new infinite families of weakly regular plateaued functions and then, to design new families of <em>p</em>-ary linear codes and investigate their use for some standard applications after studying its minimality based on their weight distributions. More specifically, we present several classes of weakly regular plateaued functions from monomial bent functions, and determine their corresponding dual functions explicitly. Furthermore, we exploit our constructions to derive several new classes of minimal linear codes violating the Ashikhmin-Barg condition with six, seven, nine, ten or eleven weights, which are more appropriate for several applications.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102644"},"PeriodicalIF":1.2,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tighter bound on the minimum distances for an infinite family of binary BCH codes and its generalization 无限族二进制BCH码的最小距离的更紧界及其推广
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-08 DOI: 10.1016/j.ffa.2025.102628
Haodong Lu, Xuan Wang, Minjia Shi
{"title":"A tighter bound on the minimum distances for an infinite family of binary BCH codes and its generalization","authors":"Haodong Lu,&nbsp;Xuan Wang,&nbsp;Minjia Shi","doi":"10.1016/j.ffa.2025.102628","DOIUrl":"10.1016/j.ffa.2025.102628","url":null,"abstract":"<div><div>In this paper, we improve the bound on the minimum distance for the family of binary cyclic codes proposed by Sun et al. (2024) <span><span>[8]</span></span>. The 3-ary analogue is also studied in this paper, which is a nice family of ternary cyclic codes that contains some best known linear codes, and this family has a better lower bound on minimum distance than that of codes proposed by Chen et al. (2023) <span><span>[2]</span></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102628"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Products of involutions in symplectic groups over general fields (II): Finite fields 一般域上辛群的对合积(II):有限域
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-08 DOI: 10.1016/j.ffa.2025.102641
Clément de Seguins Pazzis
{"title":"Products of involutions in symplectic groups over general fields (II): Finite fields","authors":"Clément de Seguins Pazzis","doi":"10.1016/j.ffa.2025.102641","DOIUrl":"10.1016/j.ffa.2025.102641","url":null,"abstract":"<div><div>Let <em>s</em> be an <em>n</em>-dimensional symplectic form over a field <span><math><mi>F</mi></math></span> of characteristic other than 2, with <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span>.</div><div>In a previous article, we have proved that if <span><math><mi>F</mi></math></span> is infinite then every element of the symplectic group <span><math><mi>Sp</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> is the product of four involutions if <em>n</em> is a multiple of 4 and of five involutions otherwise.</div><div>Here, we adapt this result to all finite fields with characteristic not 2, with the sole exception of the very special situation where <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>=</mo><mn>3</mn></math></span>, a special case which we study extensively.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102641"},"PeriodicalIF":1.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the index of power compositional polynomials 幂组合多项式的指数
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-07 DOI: 10.1016/j.ffa.2025.102642
Sumandeep Kaur , Surender Kumar , László Remete
{"title":"On the index of power compositional polynomials","authors":"Sumandeep Kaur ,&nbsp;Surender Kumar ,&nbsp;László Remete","doi":"10.1016/j.ffa.2025.102642","DOIUrl":"10.1016/j.ffa.2025.102642","url":null,"abstract":"<div><div>The index of a monic irreducible polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> having a root <em>θ</em> is the index <span><math><mo>[</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>:</mo><mi>Z</mi><mo>[</mo><mi>θ</mi><mo>]</mo><mo>]</mo></math></span> where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> is the ring of algebraic integers of the number field <span><math><mi>K</mi><mo>=</mo><mi>Q</mi><mo>(</mo><mi>θ</mi><mo>)</mo></math></span>. If <span><math><mo>[</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>:</mo><mi>Z</mi><mo>[</mo><mi>θ</mi><mo>]</mo><mo>]</mo><mo>=</mo><mn>1</mn></math></span>, then <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is monogenic. In this paper, we give necessary and sufficient conditions for a monic irreducible power compositional polynomial <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> belonging to <span><math><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, to be monogenic. As an application of our results, for a polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>+</mo><mi>A</mi><mo>⋅</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, with <span><math><mi>d</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mi>deg</mi><mo>⁡</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>&lt;</mo><mi>d</mi></math></span> and <span><math><mo>|</mo><mi>h</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>|</mo><mo>=</mo><mn>1</mn></math></span>, we prove that for each positive integer <em>k</em> with <span><math><mi>rad</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>rad</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, the power compositional polynomial <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> is monogenic if and only if <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is monogenic, provided that <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> is irreducible. At the end of the paper, we give infinite families of polynomials as examples.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102642"},"PeriodicalIF":1.2,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a theorem of Kara and Klyachko 关于Kara和Klyachko的一个定理
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-05-07 DOI: 10.1016/j.ffa.2025.102645
Sanmin Wang
{"title":"On a theorem of Kara and Klyachko","authors":"Sanmin Wang","doi":"10.1016/j.ffa.2025.102645","DOIUrl":"10.1016/j.ffa.2025.102645","url":null,"abstract":"<div><div>There exists a finite set of pairs <span><math><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of points of the modular curve <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> but <span><math><mo>(</mo><mi>j</mi><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>j</mi><mo>(</mo><mi>N</mi><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo><mo>=</mo><mo>(</mo><mi>j</mi><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>j</mi><mo>(</mo><mi>N</mi><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>, which are the singularities of the plane model <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. A theorem of Kara and Klyachko gives a characterization of these pairs of points of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. However, their proof for this theorem contains an erroneous assertion. Following their idea, we give an elementary proof for this theorem in details.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102645"},"PeriodicalIF":1.2,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143912196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信