Finite Fields and Their Applications最新文献

筛选
英文 中文
The automorphism group of the pn-torsion points of an elliptic curve over a field of characteristic p ≥ 5 特征为p ≥ 的场上椭圆曲线pn-扭转点的自同构群
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-22 DOI: 10.1016/j.ffa.2025.102631
Bo-Hae Im , Hansol Kim
{"title":"The automorphism group of the pn-torsion points of an elliptic curve over a field of characteristic p ≥ 5","authors":"Bo-Hae Im ,&nbsp;Hansol Kim","doi":"10.1016/j.ffa.2025.102631","DOIUrl":"10.1016/j.ffa.2025.102631","url":null,"abstract":"<div><div>For a field <em>K</em> of characteristic <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> and the elliptic curve <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>s</mi><mi>x</mi><mo>+</mo><mi>t</mi></math></span> defined over the function field <span><math><mi>K</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></math></span> of two variables <em>s</em> and <em>t</em>, we prove that for a positive integer <em>n</em>, the automorphism group of the normal extension <span><math><mi>K</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mrow><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow><mo>)</mo></mrow><mo>/</mo><mi>K</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></math></span> is isomorphic to <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>Z</mi><mo>)</mo></mrow><mrow><mo>×</mo></mrow></msup></math></span>, and its inseparable degree is <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102631"},"PeriodicalIF":1.2,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(σ,τ)-derivations of group rings with applications (σ,τ)-群环的导数及其应用
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-22 DOI: 10.1016/j.ffa.2025.102629
Praveen Manju , Rajendra Kumar Sharma
{"title":"(σ,τ)-derivations of group rings with applications","authors":"Praveen Manju ,&nbsp;Rajendra Kumar Sharma","doi":"10.1016/j.ffa.2025.102629","DOIUrl":"10.1016/j.ffa.2025.102629","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Leo Creedon and Kieran Hughes in &lt;span&gt;&lt;span&gt;[18]&lt;/span&gt;&lt;/span&gt; studied derivations of a group ring &lt;em&gt;RG&lt;/em&gt; (of a group &lt;em&gt;G&lt;/em&gt; over a commutative unital ring &lt;em&gt;R&lt;/em&gt;) in terms of generators and relators of group &lt;em&gt;G&lt;/em&gt;. In this article, we do that for &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-derivations. We develop a necessary and sufficient condition such that a map &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; can be extended uniquely to a &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-derivation &lt;em&gt;D&lt;/em&gt; of &lt;em&gt;RG&lt;/em&gt;, where &lt;em&gt;R&lt;/em&gt; is a commutative ring with unity, &lt;em&gt;G&lt;/em&gt; is a group having a presentation &lt;span&gt;&lt;math&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; (&lt;em&gt;X&lt;/em&gt; the set of generators and &lt;em&gt;Y&lt;/em&gt; the set of relators) and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a pair of &lt;em&gt;R&lt;/em&gt;-algebra endomorphisms of &lt;em&gt;RG&lt;/em&gt; which are &lt;em&gt;R&lt;/em&gt;-linear extensions of the group endomorphisms of &lt;em&gt;G&lt;/em&gt;. Further, we classify all inner &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-derivations of the group algebra &lt;em&gt;RG&lt;/em&gt; of an arbitrary group &lt;em&gt;G&lt;/em&gt; over an arbitrary commutative unital ring &lt;em&gt;R&lt;/em&gt; in terms of the rank and a basis of the corresponding &lt;em&gt;R&lt;/em&gt;-module consisting of all inner &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-derivations of &lt;em&gt;RG&lt;/em&gt;. We obtain several corollaries, particularly when &lt;em&gt;G&lt;/em&gt; is a &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-FC group or a finite group &lt;em&gt;G&lt;/em&gt; and when &lt;em&gt;R&lt;/em&gt; is a field. We also prove that if &lt;em&gt;R&lt;/em&gt; is a unital ring and &lt;em&gt;G&lt;/em&gt; is a group whose order is invertible in &lt;em&gt;R&lt;/em&gt;, then every &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-derivation of &lt;em&gt;RG&lt;/em&gt; is inner. We apply the results obtained above to study &lt;em&gt;σ&lt;/em&gt;-derivations of commutative group algebras over a field of positive characteristic and to classify all inner and outer &lt;em&gt;σ&lt;/em&gt;-derivations of dihedral group algebras &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) over an arbitrary field &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of any characteristic. Finally, we g","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102629"},"PeriodicalIF":1.2,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The minimum distance of a parameterized code over an even cycle 参数化代码在偶数周期上的最小距离
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-15 DOI: 10.1016/j.ffa.2025.102630
Eduardo Camps-Moreno , Jorge Neves , Eliseo Sarmiento
{"title":"The minimum distance of a parameterized code over an even cycle","authors":"Eduardo Camps-Moreno ,&nbsp;Jorge Neves ,&nbsp;Eliseo Sarmiento","doi":"10.1016/j.ffa.2025.102630","DOIUrl":"10.1016/j.ffa.2025.102630","url":null,"abstract":"<div><div>Parameterized linear codes over a graph exhibit a very interesting relation between their basic parameters and the combinatorics of the graph. We address the computation of the most elusive of all parameters, the minimum distance. We focus on the case of the parameterized code of order 1 over an even cycle.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102630"},"PeriodicalIF":1.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143829787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stephen D. Cohen's contributions to the finite fields community Stephen D. Cohen对有限域界的贡献
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-10 DOI: 10.1016/j.ffa.2025.102627
Sophie Huczynska, Gary L. Mullen
{"title":"Stephen D. Cohen's contributions to the finite fields community","authors":"Sophie Huczynska,&nbsp;Gary L. Mullen","doi":"10.1016/j.ffa.2025.102627","DOIUrl":"10.1016/j.ffa.2025.102627","url":null,"abstract":"<div><div>In this short note, to mark the retirement of Stephen D. Cohen from his editorial role at this journal, we discuss and acknowledge his significant contributions to the finite fields community in the areas of service and research.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102627"},"PeriodicalIF":1.2,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclically covering subspaces of Fqn 循环覆盖Fqn的子空间
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-10 DOI: 10.1016/j.ffa.2025.102625
Meng Sun, Changli Ma, Liwei Zeng
{"title":"Cyclically covering subspaces of Fqn","authors":"Meng Sun,&nbsp;Changli Ma,&nbsp;Liwei Zeng","doi":"10.1016/j.ffa.2025.102625","DOIUrl":"10.1016/j.ffa.2025.102625","url":null,"abstract":"<div><div>Let <em>q</em> be a prime power, <em>n</em> be a positive integer, and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be the <em>n</em>-dimensional row vector space over finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We say a subspace <em>U</em> of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is cyclically covering if the union of the cyclic shifts of <em>U</em> is equal to <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Recently, the largest possible codimension of a cyclically covering subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, denoted by <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, has attracted the attention of many scholars. In this paper, we introduce cyclically covering subspaces of finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. By virtue of the theory of direct sum decomposition of finite fields, we describe a method for constructing cyclically covering subspaces of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, and determine the value of <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for some special <em>n</em>. In particular, we prove <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>21</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>. Finally, several lower bounds of <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are given when <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, which generalizes results of the existing results in <span><span>[2]</span></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102625"},"PeriodicalIF":1.2,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study on three classes of permutation quadrinomials over finite fields of odd characteristic 奇特征有限域上三类置换四项的研究
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-04-10 DOI: 10.1016/j.ffa.2025.102626
Changhui Chen , Haibin Kan , Jie Peng , Hengtai Wang , Lijing Zheng
{"title":"The study on three classes of permutation quadrinomials over finite fields of odd characteristic","authors":"Changhui Chen ,&nbsp;Haibin Kan ,&nbsp;Jie Peng ,&nbsp;Hengtai Wang ,&nbsp;Lijing Zheng","doi":"10.1016/j.ffa.2025.102626","DOIUrl":"10.1016/j.ffa.2025.102626","url":null,"abstract":"<div><div>Let <em>p</em> be an odd prime and <em>n</em> a positive integer. This paper focuses on the investigation of permutation quadrinomials with generalized Niho exponents over finite fields of odd characteristic. Inspired by the works in <span><span>[10]</span></span>, we study two classes of permutation quadrinomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> and a class of permutation quadrinomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. Finally, we verify that permutation quadrinomials presented in this paper are multiplicative inequivalent to known ones.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"105 ","pages":"Article 102626"},"PeriodicalIF":1.2,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some classes of permutation pentanomials 几类置换五反常项
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-03-27 DOI: 10.1016/j.ffa.2025.102619
Zhiguo Ding , Michael E. Zieve
{"title":"Some classes of permutation pentanomials","authors":"Zhiguo Ding ,&nbsp;Michael E. Zieve","doi":"10.1016/j.ffa.2025.102619","DOIUrl":"10.1016/j.ffa.2025.102619","url":null,"abstract":"<div><div>For each prime <span><math><mi>p</mi><mo>≠</mo><mn>3</mn></math></span> and each power <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, we present two large classes of permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of the form <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>B</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> which have at most five terms, where <span><math><mi>B</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a polynomial with coefficients in <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>}</mo></math></span>. The special case <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> of our results comprises a vast generalization of 76 recent results and conjectures in the literature. In case <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>, no instances of our permutation polynomials have appeared in the literature, and the construction of such polynomials had been posed as an open problem. Our proofs are short and involve no computations, in contrast to the proofs of many of the special cases of our results which were published previously.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102619"},"PeriodicalIF":1.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On self-dual completely regular codes with covering radius ρ ≤ 3 关于覆盖半径 ρ ≤ 3 的自双完全正则码
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-03-27 DOI: 10.1016/j.ffa.2025.102617
J. Borges , V. Zinoviev
{"title":"On self-dual completely regular codes with covering radius ρ ≤ 3","authors":"J. Borges ,&nbsp;V. Zinoviev","doi":"10.1016/j.ffa.2025.102617","DOIUrl":"10.1016/j.ffa.2025.102617","url":null,"abstract":"<div><div>We give a complete classification of self-dual completely regular codes with covering radius <span><math><mi>ρ</mi><mo>≤</mo><mn>3</mn></math></span>. For <span><math><mi>ρ</mi><mo>=</mo><mn>1</mn></math></span> the results are almost trivial. For <span><math><mi>ρ</mi><mo>=</mo><mn>2</mn></math></span>, by using properties of the more general class of uniformly packed codes in the wide sense, we show that there are two sporadic such codes, of length 8, and an infinite family, of length 4, apart from the direct sum of two self-dual completely regular codes with <span><math><mi>ρ</mi><mo>=</mo><mn>1</mn></math></span>, each one. For <span><math><mi>ρ</mi><mo>=</mo><mn>3</mn></math></span>, in some cases, we use similar techniques to the ones used for <span><math><mi>ρ</mi><mo>=</mo><mn>2</mn></math></span>. However, for some other cases we use different methods, namely, the Pless power moments which allow to us to discard several possibilities. We show that there are only two self-dual completely regular codes with <span><math><mi>ρ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, which are both ternary: the extended ternary Golay code and the direct sum of three ternary Hamming codes of length 4. Therefore, any self-dual completely regular code with <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>ρ</mi><mo>=</mo><mn>3</mn></math></span> is ternary and has length 12.</div><div>We provide the intersection arrays for all such codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"105 ","pages":"Article 102617"},"PeriodicalIF":1.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The differential uniformity of the power functions xpn+52 over Fpn 幂函数xpn+52 / Fpn的微分均匀性
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-03-27 DOI: 10.1016/j.ffa.2025.102622
Wenping Yuan , Xiaoni Du , Huan Zhou , Xingbin Qiao
{"title":"The differential uniformity of the power functions xpn+52 over Fpn","authors":"Wenping Yuan ,&nbsp;Xiaoni Du ,&nbsp;Huan Zhou ,&nbsp;Xingbin Qiao","doi":"10.1016/j.ffa.2025.102622","DOIUrl":"10.1016/j.ffa.2025.102622","url":null,"abstract":"<div><div>Cryptographic functions with low differential uniformity have important applications in designing S-box in the block ciphers. In this paper, we mainly investigate the differential uniformity <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> on a new class of power mappings <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> with <em>p</em> being an odd prime and <em>n</em> being a positive integer. More precisely, for <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, the differential uniformity and the differential spectrum of <em>F</em> have been determined explicitly. The results indicate that <em>F</em> is a locally-PN function with differentially <span><math><mfrac><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>-uniform when <em>n</em> is odd and a locally-APN function with differentially <span><math><mfrac><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>-uniform when <em>n</em> is even. Then, for <span><math><mi>p</mi><mo>=</mo><mn>5</mn></math></span>, we prove that <em>F</em> is APN for even <em>n</em> and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>6</mn></math></span> for odd <em>n</em> through specific differential equations and quadratic character over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. The method is different from the existing one. Moreover, for primes <span><math><mi>p</mi><mo>&gt;</mo><mn>5</mn></math></span>, we show that <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>≤</mo><mn>5</mn></math></span> when <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>≤</mo><mn>8</mn></math></span> when <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"105 ","pages":"Article 102622"},"PeriodicalIF":1.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zeros of a system of diagonal polynomials over finite fields 有限域上对角多项式系统的零
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2025-03-26 DOI: 10.1016/j.ffa.2025.102623
Yulu Feng
{"title":"Zeros of a system of diagonal polynomials over finite fields","authors":"Yulu Feng","doi":"10.1016/j.ffa.2025.102623","DOIUrl":"10.1016/j.ffa.2025.102623","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the finite field of characteristic &lt;em&gt;p&lt;/em&gt;, having &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; elements and let &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; be the unit group of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the number of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a nonnegative integer for &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ord&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;munder&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102623"},"PeriodicalIF":1.2,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信