{"title":"具有第三大可能属q的极大函数域的Weierstrass半群和自同构群 ≡ 1 (mod 3)","authors":"Peter Beelen , Maria Montanucci , Lara Vicino","doi":"10.1016/j.ffa.2025.102701","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we continue the work started in <span><span>[3]</span></span>, explicitly determining the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> having the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This function field arises as a Galois subfield of the Hermitian function field, and its uniqueness (with respect to the value of its genus) is a well-known open problem. Knowing the Weierstrass semigroups may provide a key towards solving this problem. Surprisingly enough, <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> has many different types of Weierstrass semigroups and the set of its Weierstrass places is much richer than its set of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We show that a similar exceptional behaviour does not occur in terms of automorphisms, that is, <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is exactly the automorphism group inherited from the Hermitian function field, apart from small values of <em>q</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102701"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q ≡ 1 (mod 3)\",\"authors\":\"Peter Beelen , Maria Montanucci , Lara Vicino\",\"doi\":\"10.1016/j.ffa.2025.102701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we continue the work started in <span><span>[3]</span></span>, explicitly determining the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> having the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This function field arises as a Galois subfield of the Hermitian function field, and its uniqueness (with respect to the value of its genus) is a well-known open problem. Knowing the Weierstrass semigroups may provide a key towards solving this problem. Surprisingly enough, <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> has many different types of Weierstrass semigroups and the set of its Weierstrass places is much richer than its set of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We show that a similar exceptional behaviour does not occur in terms of automorphisms, that is, <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is exactly the automorphism group inherited from the Hermitian function field, apart from small values of <em>q</em>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"109 \",\"pages\":\"Article 102701\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001315\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001315","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q ≡ 1 (mod 3)
In this article we continue the work started in [3], explicitly determining the Weierstrass semigroup at any place and the full automorphism group of a known -maximal function field having the third largest genus, for . This function field arises as a Galois subfield of the Hermitian function field, and its uniqueness (with respect to the value of its genus) is a well-known open problem. Knowing the Weierstrass semigroups may provide a key towards solving this problem. Surprisingly enough, has many different types of Weierstrass semigroups and the set of its Weierstrass places is much richer than its set of -rational places. We show that a similar exceptional behaviour does not occur in terms of automorphisms, that is, is exactly the automorphism group inherited from the Hermitian function field, apart from small values of q.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.