Closed formulas for the generators of all constacyclic codes and for the factorization of Xn − 1, the n-th cyclotomic polynomial and every composition of the form f(Xn) over a finite field for arbitrary positive integers n

IF 1.2 3区 数学 Q1 MATHEMATICS
Anna-Maurin Graner
{"title":"Closed formulas for the generators of all constacyclic codes and for the factorization of Xn − 1, the n-th cyclotomic polynomial and every composition of the form f(Xn) over a finite field for arbitrary positive integers n","authors":"Anna-Maurin Graner","doi":"10.1016/j.ffa.2025.102695","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we present the solution to four 150 year-old closely related problems in the study of polynomials and algebraic codes over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We give <em>one closed formula each</em> for the factorization of the polynomials <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>a</mi></math></span> for arbitrary <span><math><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>, the <em>n</em>-th cyclotomic polynomial and the composition <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> for arbitrary monic irreducible polynomials <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>, <span><math><mi>f</mi><mo>≠</mo><mi>X</mi></math></span>, for <em>arbitrary positive integers n.</em> With a new perspective on these problems we show that the factorization of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>a</mi></math></span> has a beautiful underlying structure which is completely determined by the order of <em>a</em> in the multiplicative group <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</div><div>The binomial <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>a</mi></math></span> and the composition <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> were first considered over prime fields by Joseph Alfred Serret in 1866. In recent years, the factorization of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>a</mi></math></span> has been studied extensively due to the fact that its factors are the generators of the popular constacyclic codes over finite fields. The factorization of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> and of its famous factor, the <em>n</em>-th cyclotomic polynomial, was first studied over prime fields by Carl Friedrich Gauss (among others) in the middle of the 19th century. Since then, many mathematicians were fascinated by this factorization and nowadays it is needed for the construction of the cyclic codes over finite fields.</div><div>Many formulas for the factorization of the four polynomials for special choices of <em>n</em> and <em>a</em> were obtained by a large number of mathematicians. Our formulas naturally extend, cover, combine and complete all of these partial solutions.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102695"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500125X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present the solution to four 150 year-old closely related problems in the study of polynomials and algebraic codes over a finite field Fq. We give one closed formula each for the factorization of the polynomials Xna for arbitrary aFq, Xn1, the n-th cyclotomic polynomial and the composition f(Xn) for arbitrary monic irreducible polynomials fFq[X], fX, for arbitrary positive integers n. With a new perspective on these problems we show that the factorization of Xna has a beautiful underlying structure which is completely determined by the order of a in the multiplicative group Fq.
The binomial Xna and the composition f(Xn) were first considered over prime fields by Joseph Alfred Serret in 1866. In recent years, the factorization of Xna has been studied extensively due to the fact that its factors are the generators of the popular constacyclic codes over finite fields. The factorization of Xn1 and of its famous factor, the n-th cyclotomic polynomial, was first studied over prime fields by Carl Friedrich Gauss (among others) in the middle of the 19th century. Since then, many mathematicians were fascinated by this factorization and nowadays it is needed for the construction of the cyclic codes over finite fields.
Many formulas for the factorization of the four polynomials for special choices of n and a were obtained by a large number of mathematicians. Our formulas naturally extend, cover, combine and complete all of these partial solutions.
所有常环码的生成和Xn的分解的封闭公式 − 1,第n个环多项式和任意正整数n在有限域上的形式f(Xn)的每一个组合
本文给出了有限域Fq上多项式和代数码研究中四个有150年历史的密切相关问题的解。对于任意正整数n,对于任意a∈Fq, Xn−1,对于任意单不可约多项式f∈Fq[X], f≠X,我们分别给出了多项式Xn−a的因式分解和复合f(Xn)的封闭公式。我们从一个新的角度证明了Xn−a的因式分解具有一个美丽的内在结构,它完全由乘法群Fq中a的阶数决定。二项式Xn−a和组成f(Xn)是由Joseph Alfred Serret在1866年首次提出的。近年来,由于Xn−a的因式分解是有限域上常见的常环码的生成因子,因此对Xn−a的因式分解得到了广泛的研究。19世纪中期,卡尔·弗里德里希·高斯(Carl Friedrich Gauss)首先在素数场上研究了Xn−1及其著名的因子n-环多项式的分解。从那时起,许多数学家对这种分解着迷,现在需要它来构造有限域上的循环码。对于n和a的特殊选择,许多数学家得到了四个多项式的因式分解的许多公式。我们的公式自然地扩展、涵盖、组合并完成所有这些部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信