{"title":"Square values of several polynomials over a finite field","authors":"Kaloyan Slavov","doi":"10.1016/j.ffa.2025.102696","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be polynomials in <em>n</em> variables with coefficients in a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We estimate the number of points <span><math><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder></math></span> in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> such that each value <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder><mo>)</mo></math></span> is a nonzero square in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. The error term is especially small when the <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> define smooth projective quadrics with nonsingular intersections. We improve the error term in a recent work by Asgarli–Yip on mutual position of smooth quadrics.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102696"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001261","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be polynomials in n variables with coefficients in a finite field . We estimate the number of points in such that each value is a nonzero square in . The error term is especially small when the define smooth projective quadrics with nonsingular intersections. We improve the error term in a recent work by Asgarli–Yip on mutual position of smooth quadrics.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.