{"title":"(r,δ)-定值q和d的局部可修码的大小界限","authors":"Wenqin Zhang , Chen Yuan , Yuan Luo , Nian Li","doi":"10.1016/j.ffa.2025.102697","DOIUrl":null,"url":null,"abstract":"<div><div>Erasure codes can strengthen fault-tolerance and reliability in distributed storage systems. One of these, locally repairable codes (LRCs), plays a crucial role. A locally repairable code with locality <em>r</em> (called <em>r</em>-LRC) can recover any coded symbol by accessing at most <em>r</em> other coded symbols. The original definition of LRCs is used to repair a single failed node. To address the practical concern of multiple node failures, the concept of LRCs with locality <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> was introduced by Prakash et al. (2012) which can be seen as a generalization of <em>r</em>-LRCs. Since then, the bounds and constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs have been extensively studied.</div><div>This paper is dedicated to both the bounds and constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with disjoint local repair groups over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where the parameters <em>r</em>, <em>δ</em>, the alphabet size <em>q</em>, and the minimum distance <em>d</em> are fixed constants, while the code length <em>n</em> tends to infinity. Inspired by the method of the classical Gilbert-Varshamov (GV) bound, we first derive an asymptotic Gilbert-Varshamov-type bound for <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs in this regime. We manage to show that this GV-type bound works as a threshold for random linear <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with disjoint local repair groups using the first and second moment methods. As a corollary, such a random linear <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRC has a high probability of attaining the GV-type bound. As an analogue to the classic GV-type bound, we present two constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs that each beats this GV-type bound. One construction is obtained from a straightforward concatenation of an outer BCH code and an inner <span><math><mo>[</mo><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>]</mo></math></span> MDS code. Another construction is based on the Kronecker product of two matrices. To complement our results, the case that <em>n</em> is large but finite is also considered. In this regime, we provide an explicit upper bound for the binary <em>r</em>-LRCs, which is an improvement over the one in Ma and Ge (2019). Furthermore, this bound is shown to be tight for some specific parameters.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102697"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the size of (r,δ)-locally repairable codes for fixed values q and d\",\"authors\":\"Wenqin Zhang , Chen Yuan , Yuan Luo , Nian Li\",\"doi\":\"10.1016/j.ffa.2025.102697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Erasure codes can strengthen fault-tolerance and reliability in distributed storage systems. One of these, locally repairable codes (LRCs), plays a crucial role. A locally repairable code with locality <em>r</em> (called <em>r</em>-LRC) can recover any coded symbol by accessing at most <em>r</em> other coded symbols. The original definition of LRCs is used to repair a single failed node. To address the practical concern of multiple node failures, the concept of LRCs with locality <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> was introduced by Prakash et al. (2012) which can be seen as a generalization of <em>r</em>-LRCs. Since then, the bounds and constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs have been extensively studied.</div><div>This paper is dedicated to both the bounds and constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with disjoint local repair groups over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where the parameters <em>r</em>, <em>δ</em>, the alphabet size <em>q</em>, and the minimum distance <em>d</em> are fixed constants, while the code length <em>n</em> tends to infinity. Inspired by the method of the classical Gilbert-Varshamov (GV) bound, we first derive an asymptotic Gilbert-Varshamov-type bound for <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs in this regime. We manage to show that this GV-type bound works as a threshold for random linear <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with disjoint local repair groups using the first and second moment methods. As a corollary, such a random linear <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRC has a high probability of attaining the GV-type bound. As an analogue to the classic GV-type bound, we present two constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs that each beats this GV-type bound. One construction is obtained from a straightforward concatenation of an outer BCH code and an inner <span><math><mo>[</mo><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>]</mo></math></span> MDS code. Another construction is based on the Kronecker product of two matrices. To complement our results, the case that <em>n</em> is large but finite is also considered. In this regime, we provide an explicit upper bound for the binary <em>r</em>-LRCs, which is an improvement over the one in Ma and Ge (2019). Furthermore, this bound is shown to be tight for some specific parameters.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"109 \",\"pages\":\"Article 102697\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001273\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001273","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounds on the size of (r,δ)-locally repairable codes for fixed values q and d
Erasure codes can strengthen fault-tolerance and reliability in distributed storage systems. One of these, locally repairable codes (LRCs), plays a crucial role. A locally repairable code with locality r (called r-LRC) can recover any coded symbol by accessing at most r other coded symbols. The original definition of LRCs is used to repair a single failed node. To address the practical concern of multiple node failures, the concept of LRCs with locality was introduced by Prakash et al. (2012) which can be seen as a generalization of r-LRCs. Since then, the bounds and constructions of -LRCs have been extensively studied.
This paper is dedicated to both the bounds and constructions of -LRCs with disjoint local repair groups over a finite field , where the parameters r, δ, the alphabet size q, and the minimum distance d are fixed constants, while the code length n tends to infinity. Inspired by the method of the classical Gilbert-Varshamov (GV) bound, we first derive an asymptotic Gilbert-Varshamov-type bound for -LRCs in this regime. We manage to show that this GV-type bound works as a threshold for random linear -LRCs with disjoint local repair groups using the first and second moment methods. As a corollary, such a random linear -LRC has a high probability of attaining the GV-type bound. As an analogue to the classic GV-type bound, we present two constructions of -LRCs that each beats this GV-type bound. One construction is obtained from a straightforward concatenation of an outer BCH code and an inner MDS code. Another construction is based on the Kronecker product of two matrices. To complement our results, the case that n is large but finite is also considered. In this regime, we provide an explicit upper bound for the binary r-LRCs, which is an improvement over the one in Ma and Ge (2019). Furthermore, this bound is shown to be tight for some specific parameters.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.