计数具有限制系数的不可约多项式

IF 1.2 3区 数学 Q1 MATHEMATICS
Kaimin Cheng
{"title":"计数具有限制系数的不可约多项式","authors":"Kaimin Cheng","doi":"10.1016/j.ffa.2025.102691","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be a prime power, and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field with <em>q</em> elements. Consider a positive integer <em>n</em>, and let <span><math><mi>R</mi><mo>=</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> be a family of subsets of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Define <span><math><mi>N</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> as the number of monic irreducible polynomials of degree <em>n</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> where the coefficient of each non-leading term <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span> lies in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. In this paper, we provide an asymptotic formula for <span><math><mi>N</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, extending a result of Porritt to a more general case.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102691"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting irreducible polynomials with restricted coefficients\",\"authors\":\"Kaimin Cheng\",\"doi\":\"10.1016/j.ffa.2025.102691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>q</em> be a prime power, and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field with <em>q</em> elements. Consider a positive integer <em>n</em>, and let <span><math><mi>R</mi><mo>=</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> be a family of subsets of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Define <span><math><mi>N</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> as the number of monic irreducible polynomials of degree <em>n</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> where the coefficient of each non-leading term <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span> lies in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. In this paper, we provide an asymptotic formula for <span><math><mi>N</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, extending a result of Porritt to a more general case.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"108 \",\"pages\":\"Article 102691\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设q是一个素数幂,设Fq表示有q个元素的有限域。考虑一个正整数n,设R={Ri}i=0n−1是Fq的子集族。定义N(R, N)为N / Fq次的不可约一元多项式的个数,其中每个非前导项Ti的系数在Fq∈Ri中。本文给出了N(R, N)的渐近公式,将Porritt的结果推广到更一般的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting irreducible polynomials with restricted coefficients
Let q be a prime power, and let Fq denote the finite field with q elements. Consider a positive integer n, and let R={Ri}i=0n1 be a family of subsets of Fq. Define N(R,n) as the number of monic irreducible polynomials of degree n over Fq where the coefficient of each non-leading term Ti lies in FqRi. In this paper, we provide an asymptotic formula for N(R,n), extending a result of Porritt to a more general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信