{"title":"An elementary proof of Bridy's theorem","authors":"Eric Rowland , Manon Stipulanti , Reem Yassawi","doi":"10.1016/j.ffa.2025.102621","DOIUrl":null,"url":null,"abstract":"<div><div>Christol's theorem states that a power series with coefficients in a finite field is algebraic if and only if its coefficient sequence is automatic. A natural question is how the size of a polynomial describing such a sequence relates to the size of an automaton describing the same sequence. Bridy used tools from algebraic geometry to bound the size of the minimal automaton for a sequence, given its minimal polynomial. We produce a new proof of Bridy's bound by embedding algebraic sequences as diagonals of rational functions.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"105 ","pages":"Article 102621"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000516","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Christol's theorem states that a power series with coefficients in a finite field is algebraic if and only if its coefficient sequence is automatic. A natural question is how the size of a polynomial describing such a sequence relates to the size of an automaton describing the same sequence. Bridy used tools from algebraic geometry to bound the size of the minimal automaton for a sequence, given its minimal polynomial. We produce a new proof of Bridy's bound by embedding algebraic sequences as diagonals of rational functions.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.