有限域的Artin-Schreier塔

IF 1.2 3区 数学 Q1 MATHEMATICS
Leandro Cagliero , Allen Herman , Fernando Szechtman
{"title":"有限域的Artin-Schreier塔","authors":"Leandro Cagliero ,&nbsp;Allen Herman ,&nbsp;Fernando Szechtman","doi":"10.1016/j.ffa.2025.102606","DOIUrl":null,"url":null,"abstract":"<div><div>Given a prime number <em>p</em>, we consider the tower of finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mo>⋯</mo></math></span>, where each step corresponds to an Artin-Schreier extension of degree <em>p</em>, so that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>[</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a root of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>X</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We extend and strengthen to arbitrary primes prior work of Popovych for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> on the multiplicative order <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> of the given generator <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In particular, for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, we show that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, except only when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span>, and that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is equal to the product of the orders of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> modulo <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <em>p</em> is odd, and <span><math><mi>i</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>. We also show that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, the <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>-conjugates of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> form a normal basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In addition, we obtain the minimal polynomial of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> in explicit form.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102606"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artin-Schreier towers of finite fields\",\"authors\":\"Leandro Cagliero ,&nbsp;Allen Herman ,&nbsp;Fernando Szechtman\",\"doi\":\"10.1016/j.ffa.2025.102606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a prime number <em>p</em>, we consider the tower of finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mo>⋯</mo></math></span>, where each step corresponds to an Artin-Schreier extension of degree <em>p</em>, so that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>[</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a root of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>X</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We extend and strengthen to arbitrary primes prior work of Popovych for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> on the multiplicative order <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> of the given generator <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In particular, for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, we show that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, except only when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span>, and that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is equal to the product of the orders of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> modulo <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <em>p</em> is odd, and <span><math><mi>i</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>. We also show that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, the <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>-conjugates of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> form a normal basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In addition, we obtain the minimal polynomial of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> in explicit form.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"106 \",\"pages\":\"Article 102606\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972500036X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500036X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个素数p,我们考虑有限域塔Fp=L−1∧L0∧L1∧⋯,其中每一步都对应于p阶的Artin-Schreier扩展,因此对于i≥0,Li=Li−1[ci],其中ci是Xp−X−ai−1的根,ai−1=(c−1⋯ci−1)p−1,其中c−1=1。我们将p=2的Popovych在给定生成器ci的O(ci)乘阶上对Li / Li−1的先验工作推广并加强到任意素数。特别地,当i≥0时,我们证明了O(ci)=O(ai),除非p=2且i=1,并且证明了O(ci)等于cj模Lj−1x的阶积,其中当p为奇数时0≤j≤i,当p=2时i≥2且1≤j≤i。我们还证明了当i≥0时,ai的Gal(Li/Li−1)共轭形成Li/Li−1的正规基。此外,我们得到了c1 / Fp的最小多项式的显式形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artin-Schreier towers of finite fields
Given a prime number p, we consider the tower of finite fields Fp=L1L0L1, where each step corresponds to an Artin-Schreier extension of degree p, so that for i0, Li=Li1[ci], where ci is a root of XpXai1 and ai1=(c1ci1)p1, with c1=1. We extend and strengthen to arbitrary primes prior work of Popovych for p=2 on the multiplicative order O(ci) of the given generator ci for Li over Li1. In particular, for i0, we show that O(ci)=O(ai), except only when p=2 and i=1, and that O(ci) is equal to the product of the orders of cj modulo Lj1×, where 0ji if p is odd, and i2 and 1ji if p=2. We also show that for i0, the Gal(Li/Li1)-conjugates of ai form a normal basis of Li over Li1. In addition, we obtain the minimal polynomial of c1 over Fp in explicit form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信