Leandro Cagliero , Allen Herman , Fernando Szechtman
{"title":"有限域的Artin-Schreier塔","authors":"Leandro Cagliero , Allen Herman , Fernando Szechtman","doi":"10.1016/j.ffa.2025.102606","DOIUrl":null,"url":null,"abstract":"<div><div>Given a prime number <em>p</em>, we consider the tower of finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mo>⋯</mo></math></span>, where each step corresponds to an Artin-Schreier extension of degree <em>p</em>, so that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>[</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a root of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>X</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We extend and strengthen to arbitrary primes prior work of Popovych for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> on the multiplicative order <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> of the given generator <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In particular, for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, we show that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, except only when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span>, and that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is equal to the product of the orders of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> modulo <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <em>p</em> is odd, and <span><math><mi>i</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>. We also show that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, the <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>-conjugates of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> form a normal basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In addition, we obtain the minimal polynomial of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> in explicit form.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102606"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artin-Schreier towers of finite fields\",\"authors\":\"Leandro Cagliero , Allen Herman , Fernando Szechtman\",\"doi\":\"10.1016/j.ffa.2025.102606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a prime number <em>p</em>, we consider the tower of finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mo>⋯</mo></math></span>, where each step corresponds to an Artin-Schreier extension of degree <em>p</em>, so that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>[</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a root of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>X</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We extend and strengthen to arbitrary primes prior work of Popovych for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> on the multiplicative order <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> of the given generator <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In particular, for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, we show that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, except only when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span>, and that <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is equal to the product of the orders of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> modulo <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <em>p</em> is odd, and <span><math><mi>i</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>i</mi></math></span> if <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>. We also show that for <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>, the <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>-conjugates of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> form a normal basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In addition, we obtain the minimal polynomial of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> in explicit form.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"106 \",\"pages\":\"Article 102606\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972500036X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500036X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a prime number p, we consider the tower of finite fields , where each step corresponds to an Artin-Schreier extension of degree p, so that for , , where is a root of and , with . We extend and strengthen to arbitrary primes prior work of Popovych for on the multiplicative order of the given generator for over . In particular, for , we show that , except only when and , and that is equal to the product of the orders of modulo , where if p is odd, and and if . We also show that for , the -conjugates of form a normal basis of over . In addition, we obtain the minimal polynomial of over in explicit form.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.