Finite Fields and Their Applications最新文献

筛选
英文 中文
More classes of permutation pentanomials over finite fields with characteristic two 特性为 2 的有限域上的更多类置换五元数
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-07-13 DOI: 10.1016/j.ffa.2024.102468
Tongliang Zhang , Lijing Zheng , Hanbing Zhao
{"title":"More classes of permutation pentanomials over finite fields with characteristic two","authors":"Tongliang Zhang , Lijing Zheng , Hanbing Zhao","doi":"10.1016/j.ffa.2024.102468","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102468","url":null,"abstract":"<div><p>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>. In this paper, we investigate permutation pentanomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup></math></span> with <span><math><mrow><mi>gcd</mi></mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We transform the problem concerning permutation property of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> into demonstrating that the corresponding fractional polynomial permutes the unit circle <em>U</em> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> with order <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> via a well-known lemma, and then into showing that there are no certain solution in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></ms","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The most symmetric smooth cubic surface over a finite field of characteristic 2 特征为 2 的有限域上最对称的光滑立方曲面
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-07-13 DOI: 10.1016/j.ffa.2024.102470
Anastasia V. Vikulova
{"title":"The most symmetric smooth cubic surface over a finite field of characteristic 2","authors":"Anastasia V. Vikulova","doi":"10.1016/j.ffa.2024.102470","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102470","url":null,"abstract":"<div><p>In this paper we find the largest automorphism group of a smooth cubic surface over any finite field of characteristic 2. We prove that if the order of the field is a power of 4, then the automorphism group of maximal order of a smooth cubic surface over this field is <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. If the order of the field of characteristic 2 is not a power of 4, then we prove that the automorphism group of maximal order of a smooth cubic surface over this field is the symmetric group of degree 6. Moreover, we prove that smooth cubic surfaces with such properties are unique up to isomorphism.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heffter spaces 赫夫特空间
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-07-08 DOI: 10.1016/j.ffa.2024.102464
M. Buratti , A. Pasotti
{"title":"Heffter spaces","authors":"M. Buratti ,&nbsp;A. Pasotti","doi":"10.1016/j.ffa.2024.102464","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102464","url":null,"abstract":"<div><p>The notion of a Heffter array, which received much attention in the last decade, is equivalent to a pair of orthogonal Heffter systems. In this paper we study the existence problem of a set of <em>r</em> mutually orthogonal Heffter systems for any <em>r</em>. Such a set is equivalent to a resolvable partial linear space of degree <em>r</em> whose parallel classes are Heffter systems: this is a new combinatorial design that we call a <em>Heffter space</em>. We present a series of direct constructions of Heffter spaces with odd block size and arbitrarily large degree <em>r</em> obtained with the crucial use of finite fields. Among the applications we establish, in particular, that if <span><math><mi>q</mi><mo>=</mo><mn>2</mn><mi>k</mi><mi>w</mi><mo>+</mo><mn>1</mn></math></span> is a prime power with <em>kw</em> odd and <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, then there are at least <span><math><mo>⌈</mo><mfrac><mrow><mi>w</mi></mrow><mrow><mn>4</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></mfrac><mo>⌉</mo></math></span> mutually orthogonal <em>k</em>-cycle systems of order <em>q</em>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odd moments for the trace of Frobenius and the Sato–Tate conjecture in arithmetic progressions 算术级数中弗罗贝纽斯迹的奇矩和佐藤塔特猜想
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-07-08 DOI: 10.1016/j.ffa.2024.102465
Kathrin Bringmann , Ben Kane , Sudhir Pujahari
{"title":"Odd moments for the trace of Frobenius and the Sato–Tate conjecture in arithmetic progressions","authors":"Kathrin Bringmann ,&nbsp;Ben Kane ,&nbsp;Sudhir Pujahari","doi":"10.1016/j.ffa.2024.102465","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102465","url":null,"abstract":"<div><p>In this paper, we consider the moments of the trace of Frobenius of elliptic curves if the trace is restricted to a fixed arithmetic progression. We determine the asymptotic behavior for the ratio of the <span><math><mo>(</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-th moment to the zeroeth moment as the size of the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msub></math></span> goes to infinity. These results follow from similar asymptotic formulas relating sums and moments of Hurwitz class numbers where the sums are restricted to certain arithmetic progressions. As an application, we prove that the distribution of the trace of Frobenius in arithmetic progressions is equidistributed with respect to the Sato–Tate measure.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some congruences and exponential sums 关于一些全等和指数和
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-27 DOI: 10.1016/j.ffa.2024.102451
Moubariz Z. Garaev , Igor E. Shparlinski
{"title":"On some congruences and exponential sums","authors":"Moubariz Z. Garaev ,&nbsp;Igor E. Shparlinski","doi":"10.1016/j.ffa.2024.102451","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102451","url":null,"abstract":"<div><p>Let <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> be a fixed small constant, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the finite field of <em>p</em> elements for prime <em>p</em>. We consider additive and multiplicative problems in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> that involve intervals and arbitrary sets. Representative examples of our results are as follows. Let <span><math><mi>M</mi></math></span> be an arbitrary subset of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. If <span><math><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <span><math><mi>H</mi><mo>⩾</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> or if <span><math><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>5</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <span><math><mi>H</mi><mo>⩾</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>5</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> then all, but <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> elements of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> can be represented in the form <em>hm</em> with <span><math><mi>h</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>]</mo></math></span> and <span><math><mi>m</mi><mo>∈</mo><mi>M</mi></math></span>, where <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> depends only on <em>ε</em>. Furthermore, let <span><math><mi>X</mi></math></span> be an arbitrary interval of length <em>H</em> and <em>s</em> be a fixed positive integer. If<span><span><span><math><mi>H</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>17</mn><mo>/</mo><mn>35</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>17</mn><mo>/</mo><mn>35</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>,</mo></math></span></span></span> then the number <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> of solutions to the congruence<span><span><span><math><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S107157972400090X/pdfft?md5=73d751bad88083ca796c715f3b4d9bad&pid=1-s2.0-S107157972400090X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum number of points on an intersection of a cubic threefold and a non-degenerate Hermitian threefold 立方三折与非退化赫米提三折交点的最大点数
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-25 DOI: 10.1016/j.ffa.2024.102462
Mrinmoy Datta , Subrata Manna
{"title":"Maximum number of points on an intersection of a cubic threefold and a non-degenerate Hermitian threefold","authors":"Mrinmoy Datta ,&nbsp;Subrata Manna","doi":"10.1016/j.ffa.2024.102462","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102462","url":null,"abstract":"<div><p>It was conjectured by Edoukou in 2008 that a non-degenerate Hermitian threefold in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>)</mo></math></span> has at most <span><math><mi>d</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> points in common with a threefold of degree <em>d</em> defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. He proved the conjecture for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In this paper, we show that the conjecture is true for <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>7</mn></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A further study on the Ness-Helleseth function 关于奈斯-赫勒塞斯函数的进一步研究
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-25 DOI: 10.1016/j.ffa.2024.102453
Cheng Lyu, Xiaoqiang Wang, Dabin Zheng
{"title":"A further study on the Ness-Helleseth function","authors":"Cheng Lyu,&nbsp;Xiaoqiang Wang,&nbsp;Dabin Zheng","doi":"10.1016/j.ffa.2024.102453","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102453","url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> be a finite field with <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> elements. Ness and Helleseth in <span>[29]</span> first studied a class of functions over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> with the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, which is called the Ness-Helleseth function. The <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span> in <span>[29]</span> and by Zeng et al. for any odd prime <em>p</em> in <span>[43]</span> under the condition <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we continue to study the Ness-Helleseth functions under the condition that <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Firstly, we prove that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a permutation polynomial with differential uniformity not more than 4 if <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></math></span>. Moreover, for some more special <em>u</em>, <em>f</em> is an involution with differential uniformity at most 3. Secondly, we show that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a locally-APN function for <span><math><mi>u</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>. In addition, the differential spectrum and boomerang spectrum of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic 2-spreads in V(6,q) and flag-transitive linear spaces V(6,q)中的循环 2 展和旗帜传递线性空间
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-25 DOI: 10.1016/j.ffa.2024.102463
Cian Jameson, John Sheekey
{"title":"Cyclic 2-spreads in V(6,q) and flag-transitive linear spaces","authors":"Cian Jameson,&nbsp;John Sheekey","doi":"10.1016/j.ffa.2024.102463","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102463","url":null,"abstract":"<div><p>In this paper we completely classify spreads of 2-dimensional subspaces of a 6-dimensional vector space over a finite field of characteristic not two or three upon which a cyclic group acts transitively. This addresses one of the remaining open cases in the classification of flag-transitive linear spaces. We utilise the polynomial approach innovated by Pauley and Bamberg to obtain our results.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724001023/pdfft?md5=cd6ef2ef8226a10487b87f668b7b3d4e&pid=1-s2.0-S1071579724001023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois subcovers of the Hermitian curve in characteristic p with respect to subgroups of order p2 关于 p2 阶子群的 p 特性赫米蒂曲线的伽罗瓦子覆盖率
IF 1.2 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-21 DOI: 10.1016/j.ffa.2024.102450
Barbara Gatti , Gábor Korchmáros
{"title":"Galois subcovers of the Hermitian curve in characteristic p with respect to subgroups of order p2","authors":"Barbara Gatti ,&nbsp;Gábor Korchmáros","doi":"10.1016/j.ffa.2024.102450","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102450","url":null,"abstract":"<div><p>A (projective, geometrically irreducible, non-singular) curve <span><math><mi>X</mi></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is <em>maximal</em> if the number <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of its <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational points attains the Hasse-Weil upper bound, that is <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>g</mi><mi>q</mi><mo>+</mo><mn>1</mn></math></span> where <span><math><mi>g</mi></math></span> is the genus of <span><math><mi>X</mi></math></span>. An important question, also motivated by applications to algebraic-geometry codes, is to find explicit equations for maximal curves. For a few curves which are Galois covered of the Hermitian curve, this has been done so far ad hoc, in particular in the cases where the Galois group has prime order. In this paper we obtain explicit equations of all Galois covers of the Hermitian curve with Galois group of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Doing so we also determine the <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-isomorphism classes of such curves and describe their full <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-automorphism groups.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000893/pdfft?md5=4d7dc430a08ae7fb7ea1e9c89490e861&pid=1-s2.0-S1071579724000893-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multistep strategy for polynomial system solving over finite fields and a new algebraic attack on the stream cipher Trivium 有限域上多项式系统求解的多步策略和对流密码 Trivium 的新代数攻击
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-06-19 DOI: 10.1016/j.ffa.2024.102452
Roberto La Scala , Federico Pintore , Sharwan K. Tiwari , Andrea Visconti
{"title":"A multistep strategy for polynomial system solving over finite fields and a new algebraic attack on the stream cipher Trivium","authors":"Roberto La Scala ,&nbsp;Federico Pintore ,&nbsp;Sharwan K. Tiwari ,&nbsp;Andrea Visconti","doi":"10.1016/j.ffa.2024.102452","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102452","url":null,"abstract":"<div><p>In this paper we introduce a multistep generalization of the guess-and-determine or hybrid strategy for solving a system of multivariate polynomial equations over a finite field. In particular, we propose performing the exhaustive evaluation of a subset of variables stepwise, that is, by incrementing the size of such subset each time that an evaluation leads to a polynomial system which is possibly unfeasible to solve. The decision about which evaluation to extend is based on a preprocessing consisting in computing an incomplete Gröbner basis after the current evaluation, which possibly generates linear polynomials that are used to eliminate further variables. If the number of remaining variables in the system is deemed still too high, the evaluation is extended and the preprocessing is iterated. Otherwise, we solve the system by a complete Gröbner basis computation.</p><p>Having in mind cryptanalytic applications, we present an implementation of this strategy in an algorithm called <span>MultiSolve</span> which is designed for polynomial systems having at most one solution. We prove explicit formulas for its complexity which are based on probability distributions that can be easily estimated by performing the proposed preprocessing on a testset of evaluations for different subsets of variables. We prove that an optimal complexity of <span>MultiSolve</span> is achieved by using a full multistep strategy with a maximum number of steps and in turn the standard guess-and-determine strategy, which essentially is a strategy consisting of a single step, is the worst choice. Finally, we extensively study the behaviour of <span>MultiSolve</span> when performing an algebraic attack on the well-known stream cipher <span>Trivium</span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信