多项式p进低差序列

IF 1.2 3区 数学 Q1 MATHEMATICS
Christian Weiß
{"title":"多项式p进低差序列","authors":"Christian Weiß","doi":"10.1016/j.ffa.2025.102607","DOIUrl":null,"url":null,"abstract":"<div><div>The classic example of a low-discrepancy sequence in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>a</mi><mi>n</mi><mo>+</mo><mi>b</mi></math></span> with <span><math><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span> and <span><math><mi>b</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Here we address the non-linear case and show that a polynomial <em>f</em> generates a low-discrepancy sequence in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> if and only if it is a permutation polynomial <span><math><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By this it is possible to construct non-linear examples of low-discrepancy sequences in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for all primes <em>p</em>. Moreover, we prove a criterion which decides for any given polynomial in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <span><math><mi>p</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></math></span> if it generates a low-discrepancy sequence. We also discuss connections to the theories of Poissonian pair correlations and real discrepancy.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"105 ","pages":"Article 102607"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial p-adic low-discrepancy sequences\",\"authors\":\"Christian Weiß\",\"doi\":\"10.1016/j.ffa.2025.102607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The classic example of a low-discrepancy sequence in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>a</mi><mi>n</mi><mo>+</mo><mi>b</mi></math></span> with <span><math><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span> and <span><math><mi>b</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Here we address the non-linear case and show that a polynomial <em>f</em> generates a low-discrepancy sequence in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> if and only if it is a permutation polynomial <span><math><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By this it is possible to construct non-linear examples of low-discrepancy sequences in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for all primes <em>p</em>. Moreover, we prove a criterion which decides for any given polynomial in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <span><math><mi>p</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></math></span> if it generates a low-discrepancy sequence. We also discuss connections to the theories of Poissonian pair correlations and real discrepancy.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"105 \",\"pages\":\"Article 102607\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000371\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000371","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Zp中低差序列的经典例子是(xn)=an+b,其中a∈zpx, b∈Zp。这里我们处理非线性情况,并表明多项式f在Zp中产生低差异序列当且仅当它是一个置换多项式modp2。由此可以构造出Zp中对于所有素数p的低差序列的非线性例子。此外,我们证明了一个判定Zp中任意给定的p∈{3,5,7}的多项式是否产生低差序列的判据。我们还讨论了与泊松对相关和实差理论的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial p-adic low-discrepancy sequences
The classic example of a low-discrepancy sequence in Zp is (xn)=an+b with aZp× and bZp. Here we address the non-linear case and show that a polynomial f generates a low-discrepancy sequence in Zp if and only if it is a permutation polynomial modp2. By this it is possible to construct non-linear examples of low-discrepancy sequences in Zp for all primes p. Moreover, we prove a criterion which decides for any given polynomial in Zp with p{3,5,7} if it generates a low-discrepancy sequence. We also discuss connections to the theories of Poissonian pair correlations and real discrepancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信