{"title":"Synergistic effect of anisotropic ZnO nanoparticle shape on its photocatalytic performance for drug degradation in water","authors":"Sukesh Kashiram Tumram, Rajdip Bandyopadhyaya","doi":"10.1007/s12034-024-03234-z","DOIUrl":"10.1007/s12034-024-03234-z","url":null,"abstract":"<div><p>Increasing environmental issues have emerged due to various pharmaceutical wastes. These wastes are difficult to remove by treatment due to their continuous consumption and long-term persistence. We have synthesized two different shapes of zinc oxide (ZnO) nanoparticles as catalysts—nanorod (ZnO–NR) and oval-shape (ZnO–OS). A comparative performance of these two catalyst shapes on photocatalytic degradation of rifampicin (RIF) in water—a first-line anti-tuberculosis drug, was carried out. ZnO–NR showed three times higher normalized first-order degradation rate constant of RIF under UV light than that with ZnO–OS. This is due to: (i) specific surface area and specific pore volume of ZnO–NR being 25 and six times higher, respectively, than ZnO–OS; (ii) oxygen vacancy in ZnO–NR being 1.7 times higher than ZnO–OS; (iii) slightly lower band gap energy in ZnO–NR than ZnO–OS, adding to carrier concentration; and (iv) ZnO–NR additionally showing 12.4% chemisorbed oxygen also. Towards RIF degradation, ZnO–NR shows a much improved synergistic effect than ZnO–OS under UV light, as ZnO–NR under UV light is found to give 2.7 times higher degradation than when the catalyst and UV act independently and hence only additively. Therefore, this study is helpful in tuning the shape-dependent chemical reactivity of nanoparticles in water treatment.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-enzymatic approach of H2O2 and glucose sensing using NiO–MoS2-derived electrochemical sensor","authors":"Ankush Medhi, Manas Kumar Giri, D Mohanta","doi":"10.1007/s12034-024-03291-4","DOIUrl":"10.1007/s12034-024-03291-4","url":null,"abstract":"<div><p>At present, selective and accurate determination of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and glucose has become essential for routine diagnosis. The present work demonstrates the hydrothermal synthesis of NiO nanosheet (NS)–MoS<sub>2</sub>-based composite system for non-enzymatic electrochemical detection of H<sub>2</sub>O<sub>2</sub> and glucose. To understand the structure, morphology and elemental constituents of the prepared composite system, various characterization techniques were employed, namely XRD, FTIR, FESEM, TEM and EDX. Redox activity and charge transfer process of the NiO–MoS<sub>2</sub>-based sensor electrode towards H<sub>2</sub>O<sub>2</sub> and glucose were realized via using electrochemical techniques: cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. To be mentioned, limit of detection (LOD) and sensitivity for detection of H<sub>2</sub>O<sub>2</sub> are calculated to be 3 µM and 3925 µA mM<sup>−1</sup> cm<sup>−2</sup>, respectively, under the linear range of 5–455 µM in 0.1 M PBS solution. Similarly, the LOD and sensitivity for sensing glucose is estimated to be 3.53 µM and 1880 µA mM<sup>−1</sup> cm<sup>−2</sup>, respectively, under the linear range of 5–370 µM in 0.1 M NaOH solution. The cost-effective fabricated sensor exhibited good stability with a high selectivity towards the specific analytes only.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of morphology on the thermoelectric properties of pure nanostructured zinc oxide","authors":"Rahul Madan, Vikas Kumar, Bajinder Singh, Devendra Mohan","doi":"10.1007/s12034-024-03309-x","DOIUrl":"10.1007/s12034-024-03309-x","url":null,"abstract":"<div><p>This article investigates the effect of morphology on the thermoelectric properties of nanostructured zinc oxide. Three different samples of nanostructured zinc oxide, named ZnO, ZnO triethanol amine (TEA) and ZnO Calc., were synthesized. ZnO and ZnO TEA samples were synthesized by the chemical precipitation method, while ZnO Calc. sample was prepared by the direct calcination method. The FESEM analysis revealed that ZnO and ZnO Calc. samples have flakes and nanorod-like morphology, respectively, while ZnO TEA has a mixed hexagonal and irregularly shaped morphology. The Rietveld refinement of X-ray diffraction data confirmed that all the prepared samples have a hexagonal wurtzite phase of ZnO with space group P6<sub>3</sub>mc. The energy-dispersive X-ray spectroscopy confirmed the presence of zinc and oxygen in all the synthesized samples. The electrical resistivity and Seebeck coefficient were recorded in the temperature range of 300–950 K. The negative values of the Seebeck coefficient revealed the n-type nature of all the samples. The increase in electrical resistivity with the increase in temperature confirmed that all three prepared ZnO samples show metallic behaviour. The highest Seebeck coefficient of –245 μV K<sup>–1</sup> was attained by ZnO nanorods at 950 K, while the lowest Seebeck coefficient of –212 μV K<sup>–1</sup> was obtained for ZnO TEA at 950 K. The highest thermoelectric power factor of 2.11 <span>(times , {10}^{-3})</span> W m<sup>–1</sup> K<sup>–2</sup> was attained by the ZnO Calc. sample at 950 K. The results indicate that the synthesized ZnO Calc. sample with nanorod-like morphology has better thermoelectric performance as compared to flakes and platelets-like morphology.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and properties of electrochemically assisted electroless Ni–P–TiO2–NG composite coatings","authors":"Guanghui Zhao, Chunyu Ma, Ruiteng Wang, Penghui Liu, Nan Zhou, Fuwen Qin, Qingyu Zhang","doi":"10.1007/s12034-024-03325-x","DOIUrl":"10.1007/s12034-024-03325-x","url":null,"abstract":"<div><p>Inspired by NG/TiO<sub>2</sub> composite reinforcing particles in the Ni–P matrix, an electrochemically assisted electroless deposition method was used to deposit Ni–P–TiO<sub>2</sub>–NG composite coatings on steel substrates in order to enhance their electrochemical and photocatalytic properties. The effects of current density on the microstructure, surface morphology and phase composition of the coatings were investigated. Statistical analysis based on multifractal formalism shows that the uniformity of the height distribution shows an increasing and then a decreasing trend as the current density increases. The results show that the average hardness reached a maximum value of 966 H<sub>V0.1</sub> for the optimum coating obtained at a current density of 4 A dm<sup>–2</sup>, the corrosion current reached a minimum value of 2.041 × 10<sup>–5</sup> A cm<sup>–2</sup>, with a maximum corrosion potential of –0.281 V <i>vs.</i> SCE. These improvements can be attributed to high phosphorus Ni–P composite coatings with smooth and dense morphology, TiO<sub>2</sub>/NG nanocomposite impermeability and excellent mechanical properties. In addition, the photocatalytic activity of the Ni–P–TiO<sub>2</sub>–NG coating gradually increases with increasing current density.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environment-friendly approach to rGO–TMD composite synthesis for use as a supercapacitor","authors":"Ragini Chaturvedi, Amit Garg","doi":"10.1007/s12034-024-03310-4","DOIUrl":"10.1007/s12034-024-03310-4","url":null,"abstract":"<div><p>Owing to their characteristics like fast charge–discharge rate, very long life, simple geometry and eco-friendly nature, supercapacitor is an emerging technology to fulfil the present and future requirements of the energy. The performance of a supercapacitor is derived from the composition and morphology of the electrode. 2D materials possess various excellent structural properties like surface area, flexibility in the atomic scale dimension and mechanical strength with high electrical conductivity. This makes them an entrusted material to be used as an electrode material. The teaming of 2D materials and layered transition metal dichalcogenides have been of great interest for electrode materials. In this study, the reduction of graphene oxide is done by an environment-friendly synthesis method using cow urine, and then, synthesizing the reduced graphene oxide (rGO) and transition metal dichalcogenides (TMD) composite using the refluxing method. The modified pencil graphite electrode (PGE) was functionalized using the above composite and the performance is comparable to that of glassy carbon electrode. Our main motive was to develop a low-cost, sustainable and highly effective MoS<sub>2</sub>–rGO/PGE, which is completely based on an environment and eco-friendly method using natural precursors. The prepared MoS<sub>2</sub>–rGO nanocomposite was characterized by XRD, SEM and EDX, which revealed the formation as well as its morphological scenario. MoS<sub>2</sub>–rGO/PGE is explored as electrode material by electrochemical characterization with the 3-electrode system through cyclic voltammetry and electrochemical impedance spectroscopy, which exhibit maximum specific capacitance with good cycle stability.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Arif Dar, Haridharan Neelamegan, V J Priyadharshini, S Rafi Ahamed, P Arularasan, Madhulika Mishra, Aafaq A. Rather
{"title":"Enhancing supercapacitor, photovoltaic and magnetic properties of SnO2 nanoparticles doped with Cu and Zn ions","authors":"Mohd Arif Dar, Haridharan Neelamegan, V J Priyadharshini, S Rafi Ahamed, P Arularasan, Madhulika Mishra, Aafaq A. Rather","doi":"10.1007/s12034-024-03293-2","DOIUrl":"10.1007/s12034-024-03293-2","url":null,"abstract":"<div><p>In this study, Cu- and Zn-doped SnO<sub>2</sub> nanoparticles (NPs) were synthesized by using the solvothermal method. The synthesized NPs were explored to check their supercapacitor, photovoltaic and magnetic properties. The Cu-doped SnO<sub>2</sub> NPs showed a high specific capacitance of 386 F g<sup>−1</sup> at 20 mV s<sup>−1</sup> in 1 M KOH electrolyte and remarkable catalytic performance as a counter electrode (CE) for dye-sensitized solar cells (DSSCs), achieving a power conversion efficiency (PCE) of 10.70%, comparable to that of Pt CE. Moreover, Cu-doped SnO<sub>2</sub> NPs displayed the highest room-temperature ferromagnetism, indicating their potential for magnetic device applications. Our results suggest that doped SnO<sub>2</sub> NPs are promising candidates for multifunctional nanomaterials in energy and information technologies.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increased lithium-ionic conductivity with Nb- and Ta-doping in garnet-structured solid electrolyte oxides","authors":"S Siddiqui, D Singh, B Singh","doi":"10.1007/s12034-024-03275-4","DOIUrl":"10.1007/s12034-024-03275-4","url":null,"abstract":"<div><p>Garnet-type oxide materials show high Li-ion conductivity and may be used as solid-state electrolytes in lithium-ion batteries to address safety concerns. In this study, Nb-doped Li<sub>7</sub>Nd<sub>2.8</sub>Ca<sub>0.2</sub>Zr<sub>1.8</sub>Nb<sub>0.2</sub>O<sub>12</sub> (LNdCZNbO) and Ta-doped Li<sub>7</sub>Nd<sub>2.8</sub>Ca<sub>0.2</sub>Zr<sub>1.8</sub>Ta<sub>0.2</sub>O<sub>12</sub> (LNdCZTaO) garnet-type compositions were prepared to examine the impact of Nb- and Ta-doping on ionic conductivity of Li<sub>7</sub>Nd<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LNdZO). XRD patterns showed the crystallization of major phase of these garnet-structured oxides in tetragonal symmetry. Impedance measurements were recorded from room temperature to 450°C using a Novocontrol make impedance analyzer (Alpha-A high-performance frequency analyzer) in the frequency range of 1 Hz–40 MHz. The maximum total conductivity of parent composition LNdZO was 5.12 × 10<sup>−5</sup> S cm<sup>−1</sup> at 25°C. The compositions of LNdCZNbO and LNdCZTaO showed conductivity 7.05 × 10<sup>−4</sup> and 8.23 × 10<sup>−4</sup> S cm<sup>−1</sup>, respectively, at 25°C. On higher temperature of 350°C, these doped compositions, LNdCZNbO and LNdCZTaO, showed enhanced conductivity of 3.30 × 10<sup>−3</sup> and 2.63 × 10<sup>−3</sup> S cm<sup>−1</sup>, respectively, as compared to the parent LNdZO composition’s conductivity of 4.42 × 10<sup>−4</sup> S cm<sup>−1</sup>. Analysis of the Cole–Cole plots fitting showed the nature of Li ionic conduction and the existence of bulk and grain boundary impedances in these compositions. The activation energy was found to be higher for the compositions of LNdCZNbO (0.18 ± 0.01 eV) and LNdCZTaO (0.17 ± 0.01 eV) in comparison with the activation energy of undoped composition Li<sub>7</sub>Nd<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (0.14 ± 0.00 eV) due to the change in garnet lattice by doping of Ca and Nb/Ta.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved electron transport in planar perovskite solar cells using TiO2, SnO2 and WO3 ultra-thin layers: a comparison on all single layer and bilayer structures","authors":"Mozhgan Kazemzadeh Otoufi, Ahmad Kermanpur","doi":"10.1007/s12034-024-03170-y","DOIUrl":"10.1007/s12034-024-03170-y","url":null,"abstract":"<div><p>To achieve high performance in perovskite solar cells (PSCs), it is very vital to engineer the recombination and extraction of the hole–electron pairs at the electron transport layer (ETL)/perovskite interface. In this research, the main idea is to improve the photovoltaic performance of the cells by modifying the compact ETL surface (≈50 nm thick) by inserting a <10 nm thick ultra-thin layer (UTL) of metal oxide. For this purpose, all types of single layer and bilayer structured ETLs of TiO<sub>2</sub>, SnO<sub>2</sub> and WO<sub>3</sub>, i.e., three common metal oxide electron transport materials in PSCs, were fabricated using the reproducible and industry-compatible radio-frequency sputtering method and their function as ETLs was then compared. These ETLs and cells were characterized for structural and electrical properties by FESEM, XRD, Mott–Schottky analysis, UV–Vis spectroscopy and <i>J–V</i> measurements. It was found that a significant increase in cell efficiency is achieved due to more efficient energy band alignment using the bilayer structures of TiO<sub>2</sub>/WO<sub>3</sub>-UTL, SnO<sub>2</sub>/WO<sub>3</sub>-UTL and TiO<sub>2</sub>/SnO<sub>2</sub>-UTL. Conversely, reduced efficiency is observed when using their inverted structures, namely WO<sub>3</sub>/TiO<sub>2</sub>-UTL, WO<sub>3</sub>/SnO<sub>2</sub>-UTL and SnO<sub>2</sub>/TiO<sub>2</sub>-UTL. These results suggest a simple and promising strategy to increase the efficiency of photovoltaic devices.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kourosh Jafarzadeh, Hamed Ansari Ashlaghi, Ali Alizadeh, Hadiseh Mazhari Abbasi
{"title":"An investigation on the corrosion behaviour of B4C-reinforced AA5083 aluminium alloy in sodium chloride solution using electrochemical impedance spectroscopy","authors":"Kourosh Jafarzadeh, Hamed Ansari Ashlaghi, Ali Alizadeh, Hadiseh Mazhari Abbasi","doi":"10.1007/s12034-024-03262-9","DOIUrl":"10.1007/s12034-024-03262-9","url":null,"abstract":"<div><p>In this research, the role of B<sub>4</sub>C-reinforcing particles on the corrosion behaviour of Al5083/B<sub>4</sub>C nanocomposite has been investigated. Al/B<sub>4</sub>C nanocomposite powder with weight percentages of 3 and 7 of reinforcing phase was prepared by mechanical milling method. The resulting powder was initially hot-pressed and then hot-extruded. The microstructure of the sample was studied using scanning electron microscopy and their corrosion behaviour was studied using potentiodynamic polarization and scanning electrochemical impedance spectroscopy methods in different immersion time intervals. The results showed a uniform distribution of reinforcing particles and also the scattering of intermetallic particles at the surface of the samples. However, increasing the content of B<sub>4</sub>C particles in the composite samples enhances the cathodic and anodic reactions by increasing the content of intermetallic particles as cathodic sites on the surface, so that higher corrosion current density is observed in the composite samples with 7 wt% B<sub>4</sub>C. Finally, it was concluded that increasing the value of B<sub>4</sub>C decreases the corrosion resistance of the B<sub>4</sub>C-reinforced composite samples in sodium chloride solution, which makes it unsuitable in marine applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumit Chabri, Sayan Samanta, Goutam Roy, Akhtarujjaman Sarkar, Supriya Bera
{"title":"Effect of free energy on the solid solubility and magnetic behaviour of a mechanically alloyed nanocrystalline Cu–Co–Ti alloy","authors":"Sumit Chabri, Sayan Samanta, Goutam Roy, Akhtarujjaman Sarkar, Supriya Bera","doi":"10.1007/s12034-024-03312-2","DOIUrl":"10.1007/s12034-024-03312-2","url":null,"abstract":"<p>This study aimed to exploit the potential of the ball-milling method to create a super-saturated solid solution in an immiscible Cu–Co system. The nanocrystalline binary 50Cu–50Co (at%) and ternary 50Cu–40Co–10Ti (at%) alloys produced by ball milling for up to 50 h and afterwards isothermal annealing are examined for microstructure and magnetic characteristics. Ti addition’s effects on solid solubility of Co in Cu morphology and magnetic characteristics of the systems were evaluated using cutting-edge techniques, such as X-ray diffraction, differential thermal analyzer, high-resolution transmission electron microscopy and superconducting quantum interference device. The thermodynamic stability of the solutions was assessed using DTA measurement at temperatures ranging from 450 to 650°C. The magnetic value of the ternary alloy after annealing increased up to 550°C before declining to 650°C.</p>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}