增强镍基对乙醇的气敏性能:以聚偏氟乙烯为例

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yidong Zhang, Zhenwei Dong, Huimin Jia, Lei Zhao, Yongqiang Ji
{"title":"增强镍基对乙醇的气敏性能:以聚偏氟乙烯为例","authors":"Yidong Zhang,&nbsp;Zhenwei Dong,&nbsp;Huimin Jia,&nbsp;Lei Zhao,&nbsp;Yongqiang Ji","doi":"10.1007/s12034-024-03392-0","DOIUrl":null,"url":null,"abstract":"<div><p>NiO were prepared by hydrothermal method using nitrate hexahydrate and urea as precursors at 100°C for 12 h. The morphology, size and structure was observed by scanning electron microscope and X-ray diffraction (XRD). The gas sensitivity of NiO to ethanol vapor was characterized by CGS-8 gas sensing analysis system. The results showed that the sensitivity of NiO-based gas sensor increased from 1.82 to 3.25 under the additive of polyvinylidene fluoride (PVDF). The mechanism of the enhanced gas sensing performance was investigated.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced NiO-based gas sensing performance to ethanol: the case of polyvinylidene fluoride\",\"authors\":\"Yidong Zhang,&nbsp;Zhenwei Dong,&nbsp;Huimin Jia,&nbsp;Lei Zhao,&nbsp;Yongqiang Ji\",\"doi\":\"10.1007/s12034-024-03392-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NiO were prepared by hydrothermal method using nitrate hexahydrate and urea as precursors at 100°C for 12 h. The morphology, size and structure was observed by scanning electron microscope and X-ray diffraction (XRD). The gas sensitivity of NiO to ethanol vapor was characterized by CGS-8 gas sensing analysis system. The results showed that the sensitivity of NiO-based gas sensor increased from 1.82 to 3.25 under the additive of polyvinylidene fluoride (PVDF). The mechanism of the enhanced gas sensing performance was investigated.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03392-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03392-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以六水硝酸和尿素为前驱物,在100℃下水热法制备NiO,并通过扫描电镜和x射线衍射(XRD)观察其形貌、尺寸和结构。采用CGS-8气敏分析系统表征了NiO对乙醇蒸气的气敏性。结果表明,加入聚偏氟乙烯(PVDF)后,nio基气体传感器的灵敏度由1.82提高到3.25;研究了气敏性能增强的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced NiO-based gas sensing performance to ethanol: the case of polyvinylidene fluoride

Enhanced NiO-based gas sensing performance to ethanol: the case of polyvinylidene fluoride

NiO were prepared by hydrothermal method using nitrate hexahydrate and urea as precursors at 100°C for 12 h. The morphology, size and structure was observed by scanning electron microscope and X-ray diffraction (XRD). The gas sensitivity of NiO to ethanol vapor was characterized by CGS-8 gas sensing analysis system. The results showed that the sensitivity of NiO-based gas sensor increased from 1.82 to 3.25 under the additive of polyvinylidene fluoride (PVDF). The mechanism of the enhanced gas sensing performance was investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信