Degradation of ciprofloxacin with Al2O3/MGO as heterogeneous activator of peroxymonosulphate

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hong Wu, Xue Long, Jiayuan Qin, Qiru Huang, Debin Jiang, Hao Long, Xiaoping Wang
{"title":"Degradation of ciprofloxacin with Al2O3/MGO as heterogeneous activator of peroxymonosulphate","authors":"Hong Wu,&nbsp;Xue Long,&nbsp;Jiayuan Qin,&nbsp;Qiru Huang,&nbsp;Debin Jiang,&nbsp;Hao Long,&nbsp;Xiaoping Wang","doi":"10.1007/s12034-024-03362-6","DOIUrl":null,"url":null,"abstract":"<div><p>A nano-sized Al<sub>2</sub>O<sub>3</sub>/MGO composite was studied for its ability to activate peroxymonosulphate (PMS) and generate active radicals for the degradation of ciprofloxacin (CIP). Degradation tests were performed at pH 7 with a CIP concentration of 20 mg × l<sup>−1</sup>, the Al<sub>2</sub>O<sub>3</sub>/MGO dose of 2.0 g·l<sup>−1</sup>, and the PMS dose of 2.0 g·l<sup>−1</sup>. In addition, the degradation of CIP and the stability of the Al<sub>2</sub>O<sub>3</sub>/MGO-activated-PMS system were consistent after three repeated experiments. Furthermore, sulphate radicals (<span>\\({\\text{SO}}_{4}^{ - \\bullet}\\)</span>) and hydroxyl radicals (<span>\\(^{\\bullet}\\)</span>OH) were detected during the degradation of CIP, leading to the formation of nine degradation intermediates. Additionally, two possible degradation pathways were proposed. The results of this study suggests a new mechanism for the degradation of CIP in Al<sub>2</sub>O<sub>3</sub>/MGO-activated-PMS system, which could be applied to sulphate radicals (<span>\\({\\text{SO}}_{4}^{ - \\bullet}\\)</span>) advanced oxidation processes (SR-AOPs).</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03362-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A nano-sized Al2O3/MGO composite was studied for its ability to activate peroxymonosulphate (PMS) and generate active radicals for the degradation of ciprofloxacin (CIP). Degradation tests were performed at pH 7 with a CIP concentration of 20 mg × l−1, the Al2O3/MGO dose of 2.0 g·l−1, and the PMS dose of 2.0 g·l−1. In addition, the degradation of CIP and the stability of the Al2O3/MGO-activated-PMS system were consistent after three repeated experiments. Furthermore, sulphate radicals (\({\text{SO}}_{4}^{ - \bullet}\)) and hydroxyl radicals (\(^{\bullet}\)OH) were detected during the degradation of CIP, leading to the formation of nine degradation intermediates. Additionally, two possible degradation pathways were proposed. The results of this study suggests a new mechanism for the degradation of CIP in Al2O3/MGO-activated-PMS system, which could be applied to sulphate radicals (\({\text{SO}}_{4}^{ - \bullet}\)) advanced oxidation processes (SR-AOPs).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信