Exploring the impact of temperature in valorising digestate as a strength enhancer of the expansive soil

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Arunthathi Sendilvadivelu, Sivapriya Vijayasimhan, Balaji Dhandapani, Shabar Shabir
{"title":"Exploring the impact of temperature in valorising digestate as a strength enhancer of the expansive soil","authors":"Arunthathi Sendilvadivelu,&nbsp;Sivapriya Vijayasimhan,&nbsp;Balaji Dhandapani,&nbsp;Shabar Shabir","doi":"10.1007/s12034-024-03394-y","DOIUrl":null,"url":null,"abstract":"<div><p>In engineering projects involving expansive clay, its mechanical and chemical properties are enhanced through soil stabilization using various admixtures such as fly ash, lime, and cement. Considering the admixture’s limitation in recent years, the employment of waste materials in stabilizing such soils is highly encouraged. This study investigates the efficacy of digestate ash as a soil stabilizer under diverse temperature conditions (100°C to 800°C) through an unconfined compressive strength test at an optimal stabilizer content. The Atterberg’s limits and compressive strength test were performed on the clay with and without additives at room temperature through various curing times (0 and 28 days). The digestate ash was used at 0 to 25% (by dry clay weight) as an additive along with the initial consumption of lime as an activator at 4.5% (by dry soil weight). The maximum unconfined compressive strength value of 336 kPa was observed when using 15% digestate ash obtained at 560°C for a curing period of 28-days. The significant alteration in mineralogical and chemical composition was identified when the DA-modified clay underwent X-ray diffraction and fourier transform infrared examinations. This research facilitates better understanding of digestate ash-based soil stabilization in different thermal conditions, aiding sustainable soil improvement in civil engineering and environmental remediation.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12034-024-03394-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03394-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In engineering projects involving expansive clay, its mechanical and chemical properties are enhanced through soil stabilization using various admixtures such as fly ash, lime, and cement. Considering the admixture’s limitation in recent years, the employment of waste materials in stabilizing such soils is highly encouraged. This study investigates the efficacy of digestate ash as a soil stabilizer under diverse temperature conditions (100°C to 800°C) through an unconfined compressive strength test at an optimal stabilizer content. The Atterberg’s limits and compressive strength test were performed on the clay with and without additives at room temperature through various curing times (0 and 28 days). The digestate ash was used at 0 to 25% (by dry clay weight) as an additive along with the initial consumption of lime as an activator at 4.5% (by dry soil weight). The maximum unconfined compressive strength value of 336 kPa was observed when using 15% digestate ash obtained at 560°C for a curing period of 28-days. The significant alteration in mineralogical and chemical composition was identified when the DA-modified clay underwent X-ray diffraction and fourier transform infrared examinations. This research facilitates better understanding of digestate ash-based soil stabilization in different thermal conditions, aiding sustainable soil improvement in civil engineering and environmental remediation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信