Highly stretchable conductive carbon nanofibre acrylic latex-based nanocomposites for sensing applications

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Srinivasarao Yaragalla, K B Bhavitha
{"title":"Highly stretchable conductive carbon nanofibre acrylic latex-based nanocomposites for sensing applications","authors":"Srinivasarao Yaragalla,&nbsp;K B Bhavitha","doi":"10.1007/s12034-025-03397-3","DOIUrl":null,"url":null,"abstract":"<div><p>Stretchable conducting polymer nanocomposites are indispensable for designing flexible electronic devices mainly employed in emerging robotic technology to improve human–machine interactions. Herein, we report the fabrication and testing of 300% stretchable electronic film resistors as strain sensors by spray coating carbon nanofibers (CNFs)/natural rubber solutions over a stretchable acrylic latex-CNF nanocomposite substrate. The CNF-based coatings had a low sheet resistance of 26 Ω sq<sup>−1</sup> and very good current transmission behaviour under elongation. Under 300% elongation, the nanocomposite film current reached ~55 µA demonstrating their potential as flexible thin conductive films.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-025-03397-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable conducting polymer nanocomposites are indispensable for designing flexible electronic devices mainly employed in emerging robotic technology to improve human–machine interactions. Herein, we report the fabrication and testing of 300% stretchable electronic film resistors as strain sensors by spray coating carbon nanofibers (CNFs)/natural rubber solutions over a stretchable acrylic latex-CNF nanocomposite substrate. The CNF-based coatings had a low sheet resistance of 26 Ω sq−1 and very good current transmission behaviour under elongation. Under 300% elongation, the nanocomposite film current reached ~55 µA demonstrating their potential as flexible thin conductive films.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信