npj Imaging最新文献

筛选
英文 中文
Author Correction: Nondestructive, longitudinal, 3D oxygen imaging of cells in a multi-well plate using pulse electron paramagnetic resonance imaging 作者更正:利用脉冲电子顺磁共振成像技术对多孔板中的细胞进行无损、纵向、三维氧成像
npj Imaging Pub Date : 2024-04-10 DOI: 10.1038/s44303-024-00016-4
Safa Hameed, Navin Viswakarma, Greta Babakhanova, Carl G. Simon Jr., Boris Epel, Mrignayani Kotecha
{"title":"Author Correction: Nondestructive, longitudinal, 3D oxygen imaging of cells in a multi-well plate using pulse electron paramagnetic resonance imaging","authors":"Safa Hameed, Navin Viswakarma, Greta Babakhanova, Carl G. Simon Jr., Boris Epel, Mrignayani Kotecha","doi":"10.1038/s44303-024-00016-4","DOIUrl":"10.1038/s44303-024-00016-4","url":null,"abstract":"","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00016-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing npj Imaging: a new journal to serve the bio- and medical imaging communities npj Imaging 简介:为生物和医学成像界服务的新期刊
npj Imaging Pub Date : 2024-04-08 DOI: 10.1038/s44303-024-00015-5
Timothy H. Witney
{"title":"Introducing npj Imaging: a new journal to serve the bio- and medical imaging communities","authors":"Timothy H. Witney","doi":"10.1038/s44303-024-00015-5","DOIUrl":"10.1038/s44303-024-00015-5","url":null,"abstract":"","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00015-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition 利用表面增强型空间偏移拉曼光谱仪(SESORS)进行体内成像:平衡采样频率以改善整体图像采集效果
npj Imaging Pub Date : 2024-04-03 DOI: 10.1038/s44303-024-00011-9
Fay Nicolson, Bohdan Andreiuk, Eunah Lee, Bridget O’Donnell, Andrew Whitley, Nicole Riepl, Deborah L. Burkhart, Amy Cameron, Andrea Protti, Scott Rudder, Jiang Yang, Samuel Mabbott, Kevin M. Haigis
{"title":"In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition","authors":"Fay Nicolson, Bohdan Andreiuk, Eunah Lee, Bridget O’Donnell, Andrew Whitley, Nicole Riepl, Deborah L. Burkhart, Amy Cameron, Andrea Protti, Scott Rudder, Jiang Yang, Samuel Mabbott, Kevin M. Haigis","doi":"10.1038/s44303-024-00011-9","DOIUrl":"10.1038/s44303-024-00011-9","url":null,"abstract":"In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of “spatially offset Raman spectroscopy” (SORS) with that of SERRS in a technique known as “surface enhanced spatially offset resonance Raman spectroscopy” (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 µm to 400 µm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorte","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00011-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nondestructive, longitudinal, 3D oxygen imaging of cells in a multi-well plate using pulse electron paramagnetic resonance imaging 利用脉冲电子顺磁共振成像技术对多孔板中的细胞进行无损、纵向、三维氧气成像
npj Imaging Pub Date : 2024-04-01 DOI: 10.1038/s44303-024-00013-7
Safa Hameed, Navin Viswakarma, Greta Babakhanova, Carl G. Simon Jr., Boris Epel, Mrignayani Kotecha
{"title":"Nondestructive, longitudinal, 3D oxygen imaging of cells in a multi-well plate using pulse electron paramagnetic resonance imaging","authors":"Safa Hameed, Navin Viswakarma, Greta Babakhanova, Carl G. Simon Jr., Boris Epel, Mrignayani Kotecha","doi":"10.1038/s44303-024-00013-7","DOIUrl":"10.1038/s44303-024-00013-7","url":null,"abstract":"The use of oxygen by cells is an essential aspect of cell metabolism and a reliable indicator of viable and functional cells. Viable and functional cells are essential for optimizing the therapeutic dose for cell therapy, tissue engineering, drug development, and many other biological processes and products. However, currently, there is no method to assess the cell metabolic activity nondestructively in 3D space and longitudinally as cells proliferate, metabolize, differentiate, or die. Here, we report partial pressure oxygen (pO2) mapping of live cells as a reliable indicator of viable and metabolically active cells. For pO2 imaging, we utilized trityl OX071-based pulse electron paramagnetic resonance oxygen imaging (EPROI), in combination with a 25 mT EPROI instrument, JIVA-25™, that provides 3D oxygen maps in tissues with high spatial and temporal resolution. To perform oxygen imaging in an environment-controlled apparatus using a standard biological lab consumable, that is, a multi-well plate, we developed a novel multi-well-plate incubator-resonator (MWIR) system that could accommodate 3 strips from a 96-well strip-well plate and image the middle 12 wells noninvasively and simultaneously. The MWIR system was able to keep a controlled environment (temperature at 37 °C, relative humidity between 70% - 100%, and a controlled gas-flow environment) during oxygen imaging and could keep cells alive for up to 24 h of measurement, providing a rare previously unseen longitudinal perspective of 3D cell metabolic activities. The robustness of MWIR was tested using an adherent cell line (HEK-293 cells), a nonadherent cell line (Jurkat cells), a cell-biomaterial construct (Jurkat cells seeded in a hydrogel), and a negative control (dead HEK-293 cells). Using MWIR, we demonstrate that EPROI is a versatile and robust method that can be utilized to observe the cell metabolic activity nondestructively, longitudinally, and in 3D. For the first time, we demonstrated that oxygen concentration in a multi-well plate seeded with live cells is inversely proportional to the cell seeding density, even if the cells are exposed to incubator-like gas conditions (95% air and 5% CO2). Additionally, for the first time, we also demonstrate 3D, longitudinal oxygen imaging can be used to assess cells seeded in a hydrogel scaffold. These results demonstrate nondestructive, longitudinal 3D assessment of metabolic activities of cells using EPROI during 2D planar culture and during culture in a 3D scaffold system. The MWIR and EPROI approach may be useful for characterizing cell therapies, tissue engineered medical products and other advanced therapeutics.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00013-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence unravels interpretable malignancy grades of prostate cancer on histology images 人工智能揭示组织学图像上可解释的前列腺癌恶性等级
npj Imaging Pub Date : 2024-03-06 DOI: 10.1038/s44303-023-00005-z
Okyaz Eminaga, Fred Saad, Zhe Tian, Ulrich Wolffgang, Pierre I. Karakiewicz, Véronique Ouellet, Feryel Azzi, Tilmann Spieker, Burkhard M. Helmke, Markus Graefen, Xiaoyi Jiang, Lei Xing, Jorn H. Witt, Dominique Trudel, Sami-Ramzi Leyh-Bannurah
{"title":"Artificial intelligence unravels interpretable malignancy grades of prostate cancer on histology images","authors":"Okyaz Eminaga, Fred Saad, Zhe Tian, Ulrich Wolffgang, Pierre I. Karakiewicz, Véronique Ouellet, Feryel Azzi, Tilmann Spieker, Burkhard M. Helmke, Markus Graefen, Xiaoyi Jiang, Lei Xing, Jorn H. Witt, Dominique Trudel, Sami-Ramzi Leyh-Bannurah","doi":"10.1038/s44303-023-00005-z","DOIUrl":"10.1038/s44303-023-00005-z","url":null,"abstract":"Malignancy grading of prostate cancer (PCa) is fundamental for risk stratification, patient counseling, and treatment decision-making. Deep learning has shown potential to improve the expert consensus for tumor grading, which relies on the Gleason score/grade grouping. However, the core problem of interobserver variability for the Gleason grading system remains unresolved. We developed a novel grading system for PCa and utilized artificial intelligence (AI) and multi-institutional international datasets from 2647 PCa patients treated with radical prostatectomy with a long follow-up of ≥10 years for biochemical recurrence and cancer-specific death. Through survival analyses, we evaluated the novel grading system and showed that AI could develop a tumor grading system with four risk groups independent from and superior to the current five grade groups. Moreover, AI could develop a scoring system that reflects the risk of castration resistant PCa in men who have experienced biochemical recurrence. Thus, AI has the potential to develop an effective grading system for PCa interpretable by human experts.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00005-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembled peptide-dye nanostructures for in vivo tumor imaging and photodynamic toxicity 用于体内肿瘤成像和光动力毒性的自组装肽染料纳米结构
npj Imaging Pub Date : 2024-03-04 DOI: 10.1038/s44303-024-00008-4
Raina M. Borum, Maurice Retout, Matthew N. Creyer, Yu-Ci Chang, Karlo Gregorio, Jesse V. Jokerst
{"title":"Self-assembled peptide-dye nanostructures for in vivo tumor imaging and photodynamic toxicity","authors":"Raina M. Borum, Maurice Retout, Matthew N. Creyer, Yu-Ci Chang, Karlo Gregorio, Jesse V. Jokerst","doi":"10.1038/s44303-024-00008-4","DOIUrl":"10.1038/s44303-024-00008-4","url":null,"abstract":"We report noncovalent assemblies of iRGD peptides and methylene blue dyes via electrostatic and hydrophobic stacking. These resulting nanomaterials could bind to cancer cells, image them with photoacoustic signal, and then treat them via photodynamic therapy. We first assessed the optical properties and physical properties of the materials. We then evaluated their utility for live cell targeting, in vivo imaging, and in vivo photodynamic toxicity. We tuned the performance of iRGD by adding aspartic acid (DD) or tryptophan doublets (WW) to the peptide to promote electrostatic or hydrophobic stacking with methylene blue, respectively. The iRGD-DD led to 150-nm branched nanoparticles, but iRGD-WW produced 200-nm nano spheres. The branched particles had an absorbance peak that was redshifted to 720 nm suitable for photoacoustic signal. The nanospheres had a peak at 680 nm similar to monomeric methylene blue. Upon continuous irradiation, the nanospheres and branched nanoparticles led to a 116.62% and 94.82% increase in reactive oxygen species in SKOV-3 cells relative to free methylene blue at isomolar concentrations suggesting photodynamic toxicity. Targeted uptake was validated via competitive inhibition. Finally, we used in vivo bioluminescent signal to monitor tumor burden and the effect of for photodynamic therapy: The nanospheres had little impact versus controls (p = 0.089), but the branched nanoparticles slowed SKOV-3 tumor burden by 75.9% (p < 0.05).","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00008-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140024832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal bioimaging across disciplines and scales: challenges, opportunities and breaking down barriers 跨学科和跨尺度的多模态生物成像:挑战、机遇和打破障碍
npj Imaging Pub Date : 2024-03-01 DOI: 10.1038/s44303-024-00010-w
Johanna Bischof, Georgina Fletcher, Paul Verkade, Claudia Kuntner, Julia Fernandez-Rodriguez, Linda Chaabane, Leor Ariel Rose, Andreas Walter, Michiel Vandenbosch, Marc A. M. J. van Zandvoort, Assaf Zaritsky, Antje Keppler, Maddy Parsons
{"title":"Multimodal bioimaging across disciplines and scales: challenges, opportunities and breaking down barriers","authors":"Johanna Bischof, Georgina Fletcher, Paul Verkade, Claudia Kuntner, Julia Fernandez-Rodriguez, Linda Chaabane, Leor Ariel Rose, Andreas Walter, Michiel Vandenbosch, Marc A. M. J. van Zandvoort, Assaf Zaritsky, Antje Keppler, Maddy Parsons","doi":"10.1038/s44303-024-00010-w","DOIUrl":"10.1038/s44303-024-00010-w","url":null,"abstract":"Multimodal bioimaging is a broad term used to describe experimental workflows that employ two or more different imaging modalities. Such approaches have been in use across life science domains for several years but these remain relatively limited in scope, in part due to the complexity of undertaking these types of analysis. Expanding these workflows to encompass diverse, emerging technology holds potential to revolutionize our understanding of spatial biology. In this perspective we reflect on the instrument and workflows in current use, emerging areas to consider and our experience of the barriers to broader adoption and progress. We propose several enabling solutions across the different challenge areas, emerging opportunities for consideration and highlight some of the key community activities to help move the field forward.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00010-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Raman topography imaging method toward assisting surgical tumor resection 用于辅助外科肿瘤切除的拉曼地形图成像方法
npj Imaging Pub Date : 2024-02-19 DOI: 10.1038/s44303-024-00006-6
Alexander Czaja, Alice J. Jiang, Matt Zacchary Blanco, Olga E. Eremina, Cristina Zavaleta
{"title":"A Raman topography imaging method toward assisting surgical tumor resection","authors":"Alexander Czaja, Alice J. Jiang, Matt Zacchary Blanco, Olga E. Eremina, Cristina Zavaleta","doi":"10.1038/s44303-024-00006-6","DOIUrl":"10.1038/s44303-024-00006-6","url":null,"abstract":"Achieving complete tumor resection upon initial surgical intervention can lead to better patient outcomes by making adjuvant treatments more efficacious and reducing the strain of repeat surgeries. Complete tumor resection can be difficult to confirm intraoperatively. Methods like touch preparation (TP) have been inconsistent for detecting residual malignant cell populations, and fatty specimens like breast cancer lumpectomies are too fatty to process for rapid histology. We propose a novel workflow of immunostaining and topographic surface imaging of freshly excised tissue to ensure complete resection using highly sensitive and spectrally separable surface-enhanced Raman scattering nanoparticles (SERS NPs) as the targeted contrast agent. Biomarker-targeting SERS NPs are ideal contrast agents for this application because their sensitivity enables rapid detection, and their narrow bands enable extensive intra-pixel multiplexing. The adaptive focus capabilities of an advanced Raman instrument, combined with our rotational accessory device for exposing each surface of the stained specimen to the objective lens, enable topographic mapping of complete excised specimen surfaces. A USB-controlled accessory for a Raman microscope was designed and fabricated to enable programmatic and precise angular manipulation of specimens in concert with instrument stage motions during whole-surface imaging. Specimens are affixed to the accessory on an anti-slip, sterilizable rod, and the tissue surface exposed to the instrument is adjusted on demand using a programmed rotating stepper motor. We demonstrate this topographic imaging strategy on a variety of phantoms and preclinical tissue specimens. The results show detail and texture in specimen surface topography, orientation of findings and navigability across surfaces, and extensive SERS NP multiplexing and linear quantitation capabilities under this new Raman topography imaging method. We demonstrate successful surface mapping and recognition of all 26 of our distinct SERS NP types along with effective deconvolution and localization of randomly assigned NP mixtures. Increasing NP concentrations were also quantitatively assessed and showed a linear correlation with Raman signal with an R2 coefficient of determination of 0.97. Detailed surface renderings color-encoded by unmixed SERS NP abundances show a path forward for content-rich, interactive surgical margin assessment.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00006-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tantalum oxide nanoparticles as versatile and high-resolution X-ray contrast agent for intraductal image-guided ablative procedure in rodent models of breast cancer 氧化钽纳米粒子作为多功能高分辨率 X 射线造影剂,用于乳腺癌啮齿动物模型的导管内图像引导消融术
npj Imaging Pub Date : 2024-02-19 DOI: 10.1038/s44303-024-00007-5
Erin K. Zaluzec, Elizabeth Kenyon, Maximilian Volk, Hasaan Hayat, Katherine Powell, Alexander Loomis, Shatadru Chakravarty, Jeremy M. L. Hix, Josh Schipper, Chi Chang, Matti Kiupel, Ping Wang, Erik M. Shapiro, Lorenzo F. Sempere
{"title":"Tantalum oxide nanoparticles as versatile and high-resolution X-ray contrast agent for intraductal image-guided ablative procedure in rodent models of breast cancer","authors":"Erin K. Zaluzec, Elizabeth Kenyon, Maximilian Volk, Hasaan Hayat, Katherine Powell, Alexander Loomis, Shatadru Chakravarty, Jeremy M. L. Hix, Josh Schipper, Chi Chang, Matti Kiupel, Ping Wang, Erik M. Shapiro, Lorenzo F. Sempere","doi":"10.1038/s44303-024-00007-5","DOIUrl":"10.1038/s44303-024-00007-5","url":null,"abstract":"There are limited options for primary prevention of breast cancer (BC). Experimental procedures to locally prevent BC have shown therapeutic efficacy in animal models. To determine the suitability of FDA-approved iodine-containing and various metal-containing (bismuth, gold, iodine, or tantalum) preclinical nanoparticle-based contrast agents for image-guided intraductal (ID) ablative treatment of BC in rodent models, we performed a prospective longitudinal study to determine the imaging performance, local retention and systemic clearance, safety profile, and compatibility with ablative solution of each contrast agent. At least six abdominal mammary glands (>3 female FVB/JN mice and/or Sprague-Dawley rats, 10–11 weeks of age) were intraductally injected with commercially available contrast agents (Omnipaque® 300, Fenestra® VC, MVivoTM Au, MVivoTM BIS) or in-house synthesized tantalum oxide (TaOx) nanoparticles. Contrast agents were administered at stock concentration or diluted in 70% ethanol (EtOH) and up to 1% ethyl cellulose (EC) as gelling agent to assess their compatibility with our image-guided ablative procedure. Mammary glands were serially imaged by microCT for up to 60 days after ID delivery. Imaging data were analyzed by radiologists and deep learning to measure in vivo signal disappearance of contrast agents. Mammary glands and major organs were ultimately collected for histopathological examination. TaOx-containing solutions provided best imaging performance for nitid visualization of ductal tree immediately after infusion, low outward diffusion (<1 day) and high homogeneity. Of all nanoparticles, TaOx had the highest local clearance rate (46% signal decay as stock and 36% as ablative solution 3 days after ID injection) and exhibited low toxicity. TaOx-containing ablative solution with 1% EC caused same percentage of epithelial cell death (88.62% ± 7.70% vs. 76.38% ± 9.99%, p value = 0.089) with similar minimal collateral damage (21.56 ± 5.28% vs. 21.50% ± 7.14%, p value = 0.98) in mouse and rat mammary glands, respectively. In conclusion, TaOx-nanoparticles are a suitable and versatile contrast agent for intraductal imaging and image-guided ablative procedures in rodent models of BC with translational potential to humans.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00007-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging cancer metabolism using magnetic resonance 利用磁共振成像检测癌症代谢
npj Imaging Pub Date : 2024-01-11 DOI: 10.1038/s44303-023-00004-0
Kevin M. Brindle
{"title":"Imaging cancer metabolism using magnetic resonance","authors":"Kevin M. Brindle","doi":"10.1038/s44303-023-00004-0","DOIUrl":"10.1038/s44303-023-00004-0","url":null,"abstract":"The challenge in clinical oncology is to select the most appropriate treatment for an individual patient. Transcriptome and metabolite profiling have revealed that tumours can display metabolic subtypes with different therapeutic vulnerabilities1–4. Metabolic imaging has the potential to distinguish these subtypes and therefore those treatment(s) that should be most effective. Moreover, since changes in tumour metabolism can occur early during treatment, metabolic imaging can also be used subsequently to detect early evidence of treatment response. In this Perspective I briefly review and discuss the relative advantages and disadvantages of magnetic resonance imaging of tumour metabolism using hyperpolarized 13C- and 2H-labelled substrates.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00004-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139419853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信