npj ImagingPub Date : 2023-12-06DOI: 10.1038/s44303-023-00003-1
Vito Ko, Marie C. Goess, Lukas Scheel-Platz, Tao Yuan, Andriy Chmyrov, Dominik Jüstel, Jürgen Ruland, Vasilis Ntziachristos, Selina J. Keppler, Miguel A. Pleitez
{"title":"Fast histological assessment of adipose tissue inflammation by label-free mid-infrared optoacoustic microscopy","authors":"Vito Ko, Marie C. Goess, Lukas Scheel-Platz, Tao Yuan, Andriy Chmyrov, Dominik Jüstel, Jürgen Ruland, Vasilis Ntziachristos, Selina J. Keppler, Miguel A. Pleitez","doi":"10.1038/s44303-023-00003-1","DOIUrl":"10.1038/s44303-023-00003-1","url":null,"abstract":"Conventional histology, as well as immunohistochemistry or immunofluorescence, enables the study of morphological and phenotypical changes during tissue inflammation with single-cell accuracy. However, although highly specific, such techniques require multiple time-consuming steps to apply exogenous labels, which might result in morphological deviations from native tissue structures. Unlike these techniques, mid-infrared (mid-IR) microspectroscopy is a label-free optical imaging method that retrieves endogenous biomolecular contrast without altering the native composition of the samples. Nevertheless, due to the strong optical absorption of water in biological tissues, conventional mid-IR microspectroscopy has been limited to dried thin (5–10 µm) tissue preparations and, thus, it also requires time-consuming steps—comparable to conventional imaging techniques. Here, as a step towards label-free analytical histology of unprocessed tissues, we applied mid-IR optoacoustic microscopy (MiROM) to retrieve intrinsic molecular contrast by vibrational excitation and, simultaneously, to overcome water-tissue opacity of conventional mid-IR imaging in thick (mm range) tissues. In this proof-of-concept study, we demonstrated application of MiROM for the fast, label-free, non-destructive assessment of the hallmarks of inflammation in excised white adipose tissue; i.e., formation of crown-like structures and changes in adipocyte morphology.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00003-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138866984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj ImagingPub Date : 2023-11-29DOI: 10.1038/s44303-023-00001-3
Lydia M. Smith, Hannah E. Greenwood, Will E. Tyrrell, Richard S. Edwards, Vittorio de Santis, Friedrich Baark, George Firth, Muhammet Tanc, Samantha Y. A. Terry, Anne Herrmann, Richard Southworth, Timothy H. Witney
{"title":"The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging","authors":"Lydia M. Smith, Hannah E. Greenwood, Will E. Tyrrell, Richard S. Edwards, Vittorio de Santis, Friedrich Baark, George Firth, Muhammet Tanc, Samantha Y. A. Terry, Anne Herrmann, Richard Southworth, Timothy H. Witney","doi":"10.1038/s44303-023-00001-3","DOIUrl":"10.1038/s44303-023-00001-3","url":null,"abstract":"Mouse models are invaluable tools for radiotracer development and validation. They are, however, expensive, low throughput, and are constrained by animal welfare considerations. Here, we assessed the chicken chorioallantoic membrane (CAM) as an alternative to mice for preclinical cancer imaging studies. NCI-H460 FLuc cells grown in Matrigel on the CAM formed vascularized tumors of reproducible size without compromising embryo viability. By designing a simple method for vessel cannulation it was possible to perform dynamic PET imaging in ovo, producing high tumor-to-background signal for both 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) and (4S)-4-(3-18F-fluoropropyl)-L-glutamate (18F-FSPG). The pattern of 18F-FDG tumor uptake were similar in ovo and in vivo, although tumor-associated radioactivity was higher in the CAM-grown tumors over the 60 min imaging time course. Additionally, 18F-FSPG provided an early marker of both treatment response to external beam radiotherapy and target inhibition in ovo. Overall, the CAM provided a low-cost alternative to tumor xenograft mouse models which may broaden access to PET and SPECT imaging and have utility across multiple applications.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00001-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138866985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj ImagingPub Date : 2023-11-28DOI: 10.1038/s44303-023-00002-2
Bo-Jui Chang, Douglas Shepherd, Reto Fiolka
{"title":"Projective oblique plane structured illumination microscopy","authors":"Bo-Jui Chang, Douglas Shepherd, Reto Fiolka","doi":"10.1038/s44303-023-00002-2","DOIUrl":"10.1038/s44303-023-00002-2","url":null,"abstract":"Structured illumination microscopy (SIM) can double the spatial resolution of a fluorescence microscope and video rate live cell imaging in a two-dimensional format has been demonstrated. However, rapid implementations of 2D SIM typically only cover a narrow slice of the sample immediately at the coverslip, with most of the cellular volume out of reach. Here, we implement oblique plane structured illumination microscopy (OPSIM) in a projection format to rapidly image an entire cell in a 2D SIM framework. As no mechanical scanning of the sample or objective is involved, this technique has the potential for rapid projection imaging with doubled resolution. We characterize the spatial resolution with fluorescent nanospheres, compare projection and 3D imaging using OPSIM and image mitochondria and ER dynamics across an entire cell at up to 2.7 Hz. To our knowledge, this represents the fastest whole cell SIM imaging to date.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-023-00002-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138866983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}