The Plant CellPub Date : 2024-10-15DOI: 10.1093/plcell/koae280
Anirban Baral, Delphine Gendre, Bibek Aryal, Louise Fougère, Luciano Martin Di Fino, Chihiro Ohori, Bernadette Sztojka, Tomohiro Uemura, Takashi Ueda, Peter Marhavý, Yohann Boutté, Rishikesh P Bhalerao
{"title":"TYPHON proteins are RAB-dependent mediators of the trans-Golgi network secretory pathway","authors":"Anirban Baral, Delphine Gendre, Bibek Aryal, Louise Fougère, Luciano Martin Di Fino, Chihiro Ohori, Bernadette Sztojka, Tomohiro Uemura, Takashi Ueda, Peter Marhavý, Yohann Boutté, Rishikesh P Bhalerao","doi":"10.1093/plcell/koae280","DOIUrl":"https://doi.org/10.1093/plcell/koae280","url":null,"abstract":"The trans-Golgi network (TGN), a key compartment in endomembrane trafficking, participates in both secretion to and endocytosis from the plasma membrane. Consequently, the TGN plays a key role in plant growth and development. Understanding how proteins are sorted for secretion or endocytic recycling at the TGN is critical for elucidating mechanisms of plant development. We previously showed that the protein ECHIDNA is essential for phytohormonal control of hypocotyl bending because it mediates secretion of cell wall components and the auxin influx carrier AUXIN RESISTANT 1 (AUX1) from the TGN. Despite the critical role of ECHIDNA in TGN-mediated trafficking, its mode of action remains unknown in Arabidopsis (Arabidopsis thaliana). We therefore performed a suppressor screen on the ech mutant. Here, we report the identification of TGN-localized TYPHON 1 (TPN1) and TPN2 proteins. A single amino acid change in either TPN protein causes dominant suppression of the ech mutant’s defects in growth and AUX1 secretion, while also restoring wild-type-like ethylene-responsive hypocotyl bending. Importantly, genetic and cell biological evidence shows that TPN1 acts through RAS-ASSOCIATED BINDING H1b (RABH1b), a TGN localized RAB-GTPase. These results provide insights into ECHIDNA-mediated secretory trafficking of cell wall and auxin carriers at the TGN, as well as its role in controlling plant growth.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-15DOI: 10.1093/plcell/koae278
Xingxiang Chen, Kui Liu, Tingting Luo, Baolei Zhang, Jinyu Yu, Dan Ma, Xiaoqian Sun, Huawei Zheng, Boning Xin, Jixing Xia
{"title":"Four MYB transcription factors regulate suberization and non-localized lignification at the root endodermis in rice","authors":"Xingxiang Chen, Kui Liu, Tingting Luo, Baolei Zhang, Jinyu Yu, Dan Ma, Xiaoqian Sun, Huawei Zheng, Boning Xin, Jixing Xia","doi":"10.1093/plcell/koae278","DOIUrl":"https://doi.org/10.1093/plcell/koae278","url":null,"abstract":"In response to variable environments, rice (Oryza sativa) roots have developed lignified and suberized diffusion barriers at the endodermis to permit selective nutrient uptake for optimal growth. Here, we demonstrate that endodermal suberization and non-localized lignification are redundantly regulated by four MYB transcription factors: OsMYB39a, OsMYB41, OsMYB92a, and OsMYB92b. These transcription factors function downstream of the OsMYB36a/b/c, CASPARIAN STRIP INTEGRITY FACTOR (OsCIF)–SCHENGEN3 (OsSGN3), and stress-inducible signaling pathways in rice. Knockout of all four MYB genes resulted in the complete absence of endodermal suberin lamellae (SL) and almost no lignin deposition between the Casparian strip and the cortex-facing lignified band at cell corners under all conditions examined. In contrast, endodermis-specific overexpression of any of these MYB genes was sufficient to induce strong endodermal suberization and non-localized lignification near the root tip. Furthermore, OsMYB92a-overexpressing lines showed an altered ionomic profile and enhanced salinity tolerance. Transcriptome analysis identified 152 downstream genes regulated by OsMYB39a/41/92a/92b, including the key SL formation gene OsCYP86A1 and other genes involved in endodermal lignification and suberization under normal and stress conditions. Our results provide important insights into the molecular mechanisms underlying suberization and non-localized lignification at the root endodermis and their physiological significance in ion homeostasis and acclimation to environmental stress.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-15DOI: 10.1093/plcell/koae279
Chuanfeng Ju, Laiba Javed, Yanjun Fang, Yuqing Zhao, Chenyu Cao, Yuan Deng, Yaqi Gao, Lv Sun, Cun Wang
{"title":"Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE4/5/6/11 negatively regulate hydrotropism via phosphorylation of MIZU-KUSSEI1","authors":"Chuanfeng Ju, Laiba Javed, Yanjun Fang, Yuqing Zhao, Chenyu Cao, Yuan Deng, Yaqi Gao, Lv Sun, Cun Wang","doi":"10.1093/plcell/koae279","DOIUrl":"https://doi.org/10.1093/plcell/koae279","url":null,"abstract":"Hydrotropism facilitates the orientation of plant roots towards regions of elevated water potential, enabling them to absorb adequate water. Although calcium signaling plays a crucial role in plant response to water tracking, the exact regulatory mechanisms remain a mystery. Here, we employed the Arabidopsis (Arabidopsis thaliana) hydrotropism-specific protein MIZU-KUSSEI1 (MIZ1) as bait and found that calcium-dependent protein kinases4/5/6/11 (CPK4/5/6/11) interacted with MIZ1 in vitro and in vivo. The cpk4/5/6/11 mutant exhibited increased sensitivity to water potential and enhanced root tip curvature. Furthermore, CPK4/5/6/11 primarily phosphorylated MIZ1 at Ser14/36 residues. Additionally, CPK-mediated phosphorylation of MIZ1 relieved its inhibitory effect on the activity of the endoplasmic reticulum–localized Ca2+ pump ECA1, altering the balance between cytoplasmic Ca2+ inflow and outflow, thereby negatively regulating the hydrotropic growth of plants. Overall, our findings unveil the molecular mechanisms by which the CPK4/5/6/11-MIZ1 module functions in regulating plant hydrotropism responses and provide a theoretical foundation for enhancing plant water use efficiency and promoting sustainable agriculture.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Different multicellular trichome types coordinate herbivore mechanosensing and defense in tomato.","authors":"Chao Sun,JinBo Wei,XinYun Gu,MinLiang Wu,Meng Li,YiXi Liu,NingKai An,KeMeng Wu,ShaSha Wu,JunQing Wu,MeiZhi Xu,JiaChen Wu,YaLing Wang,DaiYin Chao,YouJun Zhang,Shuang Wu","doi":"10.1093/plcell/koae269","DOIUrl":"https://doi.org/10.1093/plcell/koae269","url":null,"abstract":"Herbivore-induced wounding can elicit a defense response in plants. However, whether plants possess a surveillance system capable of detecting herbivore threats and initiating preparatory defenses before wounding occurs remains unclear. In this study, we reveal that tomato (Solanum lycopersicum) trichomes can detect and respond to the mechanical stimuli generated by herbivores. Mechanical stimuli are preferentially perceived by long trichomes, and this mechanosensation is transduced via intra-trichome communication. This communication presumably involves calcium waves, and the transduced signals activate the jasmonic acid (JA) signaling pathway in short glandular trichomes, resulting in the upregulation of the Woolly (Wo)-SlMYC1 regulatory module for terpene biosynthesis. This induced defense mechanism provides plants with an early warning system against the threat of herbivore invasion. Our findings represent a perspective on the role of multicellular trichomes in plant defense and the underlying intra-trichome communication.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-14DOI: 10.1093/plcell/koae271
Minjae Kim, Gabriel Lemes Jorge, Moritz Aschern, Stéphan Cuiné, Marie Bertrand, Malika Mekhalfi, Jean-Luc Putaux, Jae-Seong Yang, Jay J Thelen, Fred Beisson, Gilles Peltier, Yonghua Li-Beisson
{"title":"The DYRKP1 kinase regulates cell wall degradation in Chlamydomonas by inducing matrix metalloproteinase expression","authors":"Minjae Kim, Gabriel Lemes Jorge, Moritz Aschern, Stéphan Cuiné, Marie Bertrand, Malika Mekhalfi, Jean-Luc Putaux, Jae-Seong Yang, Jay J Thelen, Fred Beisson, Gilles Peltier, Yonghua Li-Beisson","doi":"10.1093/plcell/koae271","DOIUrl":"https://doi.org/10.1093/plcell/koae271","url":null,"abstract":"The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-07DOI: 10.1093/plcell/koae260
Aude Maugarny, Aurélie Vialette, Bernard Adroher, Anne-Sophie Sarthou, Nathalie Mathy-Franchet, Marianne Azzopardi, Antoine Nicolas, François Roudier, Patrick Laufs
{"title":"MIR164B ensures robust Arabidopsis leaf development by compensating for compromised POLYCOMB REPRESSIVE COMPLEX2 function","authors":"Aude Maugarny, Aurélie Vialette, Bernard Adroher, Anne-Sophie Sarthou, Nathalie Mathy-Franchet, Marianne Azzopardi, Antoine Nicolas, François Roudier, Patrick Laufs","doi":"10.1093/plcell/koae260","DOIUrl":"https://doi.org/10.1093/plcell/koae260","url":null,"abstract":"Robustness is pervasive throughout biological systems, enabling them to maintain persistent outputs despite perturbations in their components. Here, we reveal a mechanism contributing to leaf morphology robustness in the face of genetic perturbations. In Arabidopsis (Arabidopsis thaliana), leaf shape is established during early development through the quantitative action of the CUP-SHAPED COTYLEDON2 (CUC2) protein, whose encoding gene is negatively regulated by the co-expressed MICRORNA164A (MIR164A) gene. Compromised epigenetic regulation due to defective Polycomb Repressive Complex 2 (PRC2) function results in the transcriptional derepression of CUC2 but has no impact on CUC2 protein dynamics or early morphogenesis. We solve this apparent paradox by showing that compromised PRC2 function simultaneously derepresses the expression of another member of the MIR164 gene family, MIR164B. This mechanism dampens CUC2 protein levels, thereby compensating for compromised PRC2 function and canalizing early leaf morphogenesis. Furthermore, we show that this compensation mechanism is active under different environmental conditions. Our findings shed light on how the interplay between different steps of gene expression regulation can contribute to developmental robustness.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-07DOI: 10.1093/plcell/koae272
Vicky Howe
{"title":"The difference is black and green: How functional divergence of an enzyme family gave us diverse teas.","authors":"Vicky Howe","doi":"10.1093/plcell/koae272","DOIUrl":"https://doi.org/10.1093/plcell/koae272","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-26DOI: 10.1093/plcell/koae264
Li Huang, Yulin Yuan, Chloe Lewis, Chao Xia, Cankui Zhang, Joanna Kud, Joseph C Kuhl, Allan Caplan, Louise-Marie Dandurand, Fangming Xiao
{"title":"The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism","authors":"Li Huang, Yulin Yuan, Chloe Lewis, Chao Xia, Cankui Zhang, Joanna Kud, Joseph C Kuhl, Allan Caplan, Louise-Marie Dandurand, Fangming Xiao","doi":"10.1093/plcell/koae264","DOIUrl":"https://doi.org/10.1093/plcell/koae264","url":null,"abstract":"The potato (Solanum tuberosum) cyst nematode Globodera pallida induces a multinucleate feeding site (syncytium) in potato roots as its sole source of nutrition. Here, we demonstrate that the G. pallida effector RING-H2 finger A1b (RHA1B), which is a functional ubiquitin ligase, interferes with the carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) deadenylase-based RNA metabolism machinery that regulates syncytium development in G. pallida-infected potato. Specifically, RHA1B targets the CCR4-associated factor 1 (CAF1) and StNOT10 subunits of the CCR4-NOT complex for proteasome-mediated degradation, leading to upregulation of the cyclin gene StCycA2 involved in syncytium formation. The StCAF1 subunit of CCR4-NOT recruits the RNA binding protein StPUM5 to deadenylate StCycA2 mRNA, resulting in shortened poly-A tails of StCycA2 mRNA and subsequently reduced transcript levels. Knockdown of either subunit (StCAF1 or StNOT10) of the CCR4-NOT complex or StPUM5 in transgenic potato plants resulted in enlarged syncytia and enhanced susceptibility to G. pallida infection, which resembles the phenotypes of StCycA2 overexpression transgenic potato plants. Genetic analyses indicate that transgenic potato plants overexpressing RHA1B exhibit similar phenotypes as transgenic potato plants with knockdown of StNOT10, StCAF1, or StPUM5. Thus, our data suggest that G. pallida utilizes the RHA1B effector to manipulate RNA metabolism in host plants, thereby promoting syncytium development for parasitic success.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-25DOI: 10.1093/plcell/koae241
Ralph S Quatrano,Richard A Jorgensen,Cathie Martin,Sabeeha S Merchant,Blake C Meyers
{"title":"Turning the page on front matter: Wishing Nan Eckardt a joyful retirement.","authors":"Ralph S Quatrano,Richard A Jorgensen,Cathie Martin,Sabeeha S Merchant,Blake C Meyers","doi":"10.1093/plcell/koae241","DOIUrl":"https://doi.org/10.1093/plcell/koae241","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-25DOI: 10.1093/plcell/koae263
Mariana Schuster
{"title":"I want to break free: Expression of matrix metalloproteinases is necessary for cell hatching in Chlamydomonas reinhardtii.","authors":"Mariana Schuster","doi":"10.1093/plcell/koae263","DOIUrl":"https://doi.org/10.1093/plcell/koae263","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}