The Plant Cell最新文献

筛选
英文 中文
The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism 马铃薯 RNA 代谢机制是孢囊线虫效应子 RHA1B 成功寄生的目标
The Plant Cell Pub Date : 2024-09-26 DOI: 10.1093/plcell/koae264
Li Huang, Yulin Yuan, Chloe Lewis, Chao Xia, Cankui Zhang, Joanna Kud, Joseph C Kuhl, Allan Caplan, Louise-Marie Dandurand, Fangming Xiao
{"title":"The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism","authors":"Li Huang, Yulin Yuan, Chloe Lewis, Chao Xia, Cankui Zhang, Joanna Kud, Joseph C Kuhl, Allan Caplan, Louise-Marie Dandurand, Fangming Xiao","doi":"10.1093/plcell/koae264","DOIUrl":"https://doi.org/10.1093/plcell/koae264","url":null,"abstract":"The potato (Solanum tuberosum) cyst nematode Globodera pallida induces a multinucleate feeding site (syncytium) in potato roots as its sole source of nutrition. Here, we demonstrate that the G. pallida effector RING-H2 finger A1b (RHA1B), which is a functional ubiquitin ligase, interferes with the carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) deadenylase-based RNA metabolism machinery that regulates syncytium development in G. pallida-infected potato. Specifically, RHA1B targets the CCR4-associated factor 1 (CAF1) and StNOT10 subunits of the CCR4-NOT complex for proteasome-mediated degradation, leading to upregulation of the cyclin gene StCycA2 involved in syncytium formation. The StCAF1 subunit of CCR4-NOT recruits the RNA binding protein StPUM5 to deadenylate StCycA2 mRNA, resulting in shortened poly-A tails of StCycA2 mRNA and subsequently reduced transcript levels. Knockdown of either subunit (StCAF1 or StNOT10) of the CCR4-NOT complex or StPUM5 in transgenic potato plants resulted in enlarged syncytia and enhanced susceptibility to G. pallida infection, which resembles the phenotypes of StCycA2 overexpression transgenic potato plants. Genetic analyses indicate that transgenic potato plants overexpressing RHA1B exhibit similar phenotypes as transgenic potato plants with knockdown of StNOT10, StCAF1, or StPUM5. Thus, our data suggest that G. pallida utilizes the RHA1B effector to manipulate RNA metabolism in host plants, thereby promoting syncytium development for parasitic success.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turning the page on front matter: Wishing Nan Eckardt a joyful retirement. 翻开头版祝愿 Nan Eckardt 退休生活愉快。
The Plant Cell Pub Date : 2024-09-25 DOI: 10.1093/plcell/koae241
Ralph S Quatrano,Richard A Jorgensen,Cathie Martin,Sabeeha S Merchant,Blake C Meyers
{"title":"Turning the page on front matter: Wishing Nan Eckardt a joyful retirement.","authors":"Ralph S Quatrano,Richard A Jorgensen,Cathie Martin,Sabeeha S Merchant,Blake C Meyers","doi":"10.1093/plcell/koae241","DOIUrl":"https://doi.org/10.1093/plcell/koae241","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I want to break free: Expression of matrix metalloproteinases is necessary for cell hatching in Chlamydomonas reinhardtii. 我想挣脱束缚基质金属蛋白酶的表达是衣藻细胞孵化的必要条件
The Plant Cell Pub Date : 2024-09-25 DOI: 10.1093/plcell/koae263
Mariana Schuster
{"title":"I want to break free: Expression of matrix metalloproteinases is necessary for cell hatching in Chlamydomonas reinhardtii.","authors":"Mariana Schuster","doi":"10.1093/plcell/koae263","DOIUrl":"https://doi.org/10.1093/plcell/koae263","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane protein provision controls prothylakoid biogenesis in tobacco etioplasts 膜蛋白供应控制烟草根细胞中原生质的生物生成
The Plant Cell Pub Date : 2024-09-25 DOI: 10.1093/plcell/koae259
Bingqi Li, Tegan Armarego-Marriott, Łucja Kowalewska, Wolfram Thiele, Alexander Erban, Stephanie Ruf, Joachim Kopka, Mark Aurel Schöttler, Ralph Bock
{"title":"Membrane protein provision controls prothylakoid biogenesis in tobacco etioplasts","authors":"Bingqi Li, Tegan Armarego-Marriott, Łucja Kowalewska, Wolfram Thiele, Alexander Erban, Stephanie Ruf, Joachim Kopka, Mark Aurel Schöttler, Ralph Bock","doi":"10.1093/plcell/koae259","DOIUrl":"https://doi.org/10.1093/plcell/koae259","url":null,"abstract":"The cytochrome b559 heterodimer is a conserved component of photosystem II whose physiological role in photosynthetic electron transfer is enigmatic. A particularly puzzling aspect of cytochrome b559 has been its presence in etiolated seedlings, where photosystem II is absent. Whether or not the cytochrome has a specific function in etioplasts is unknown. Here, we have attempted to address the function of cytochrome b559 by generating transplastomic tobacco (Nicotiana tabacum) plants that overexpress psbE and psbF, the plastid genes encoding the two cytochrome b559 apoproteins. We show that strong overaccumulation of the PsbE apoprotein can be achieved in etioplasts by suitable manipulations of the promoter and the translation signals, while the cytochrome b559 level is only moderately elevated. The surplus PsbE protein causes striking ultrastructural alterations in etioplasts; most notably, it causes a condensed prolamellar body and a massive proliferation of prothylakoids, with multiple membrane layers coiled into spiral-like structures. Analysis of plastid lipids revealed that increased PsbE biosynthesis strongly stimulated plastid lipid biosynthesis, suggesting that membrane protein abundance controls prothylakoid membrane biogenesis. Our data provide evidence for a structural role of PsbE in prolamellar body formation and prothylakoid biogenesis, and indicate that thylakoid membrane protein abundance regulates lipid biosynthesis in etioplasts.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat 转录因子 CAMTA2 与组蛋白乙酰转移酶 GCN5 相互作用并调节小麦的粒重
The Plant Cell Pub Date : 2024-09-25 DOI: 10.1093/plcell/koae261
Ruijie Zhang, Kexin An, Yujiao Gao, Zhaoheng Zhang, Xiaobang Zhang, Xue Zhang, Vincenzo Rossi, Yuan Cao, Jun Xiao, Mingming Xin, Jinkun Du, Zhaorong Hu, Jie Liu, Huiru Peng, Zhongfu Ni, Qixin Sun, Yingyin Yao
{"title":"The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat","authors":"Ruijie Zhang, Kexin An, Yujiao Gao, Zhaoheng Zhang, Xiaobang Zhang, Xue Zhang, Vincenzo Rossi, Yuan Cao, Jun Xiao, Mingming Xin, Jinkun Du, Zhaorong Hu, Jie Liu, Huiru Peng, Zhongfu Ni, Qixin Sun, Yingyin Yao","doi":"10.1093/plcell/koae261","DOIUrl":"https://doi.org/10.1093/plcell/koae261","url":null,"abstract":"Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight. gcn5 mutant grains were smaller and contained less starch. GCN5 promoted the expression of the starch biosynthesis genes SUCROSE SYNTHASE 2 (Sus2) and STARCH-BRANCHING ENZYME Ic (SBEIc) by regulating H3K9ac and H3K14ac levels in their promoters. Moreover, immunoprecipitation followed by mass spectrometry (IP–MS) revealed that CAMTA2 physically interacts with GCN5. The CAMTA2–GCN5 complex activated Sus2 and SBEIc by directly binding to their promoters and depositing H3K9ac and H3K14ac marks during wheat endosperm development. camta2 knockout mutants exhibited similar phenotypes to gcn5 mutants, including smaller grains that contained less starch. In gcn5 mutants, transcripts of high molecular weight (HMW) Glutenin (Glu) genes were downregulated, leading to reduced HMW glutenin protein levels, gluten content, and sodium dodecyl sulfate (SDS) sedimentation volume. However, the association of GCN5 with Glu genes was independent of CAMTA2, since GCN5 enrichment on Glu promoters was unchanged in camta2 knockouts. Finally, we identified a CAMTA2-AH3 elite allele that corresponded with enhanced grain size and weight, serving as a candidate gene for breeding wheat varieties with improved grain weight.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hijacking QSK1: How pathogens turn a plant defense guardian into an accomplice. 劫持 QSK1:病原体如何把植物防御卫士变成帮凶?
The Plant Cell Pub Date : 2024-09-25 DOI: 10.1093/plcell/koae262
Shanice S Webster
{"title":"Hijacking QSK1: How pathogens turn a plant defense guardian into an accomplice.","authors":"Shanice S Webster","doi":"10.1093/plcell/koae262","DOIUrl":"https://doi.org/10.1093/plcell/koae262","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light at the end of the tunnel: FRAP assays combined with super resolution microscopy confirm the presence of a tubular vacuole network in meristematic plant cells 隧道尽头的曙光FRAP 检测与超分辨率显微镜相结合,证实分生植物细胞中存在管状液泡网络
The Plant Cell Pub Date : 2024-09-21 DOI: 10.1093/plcell/koae243
David Scheuring, Elena A Minina, Falco Krueger, Upendo Lupanga, Melanie Krebs, Karin Schumacher
{"title":"Light at the end of the tunnel: FRAP assays combined with super resolution microscopy confirm the presence of a tubular vacuole network in meristematic plant cells","authors":"David Scheuring, Elena A Minina, Falco Krueger, Upendo Lupanga, Melanie Krebs, Karin Schumacher","doi":"10.1093/plcell/koae243","DOIUrl":"https://doi.org/10.1093/plcell/koae243","url":null,"abstract":"Plant vacuoles play key roles in cellular homeostasis, performing catabolic and storage functions, and regulating pH and ion balance. Despite their essential role, there is still no consensus on how vacuoles are established. A model proposing that the endoplasmic reticulum is the main contributor of membrane for growing vacuoles in meristematic cells has been challenged by a study proposing that plant vacuoles are formed de novo by homotypic fusion of multivesicular bodies (MVBs). Here, we use the Arabidopsis thaliana root as a model system to provide a systematic overview of successive vacuole biogenesis stages, starting from the youngest cells proximate to the quiescent center. We combine in vivo high- and super-resolution (STED) microscopy to demonstrate the presence of tubular and connected vacuolar structures in all meristematic cells. Using customized fluorescence recovery after photobleaching (FRAP) assays, we establish different modes of connectivity and demonstrate that thin, tubular vacuoles, as observed in cells near the quiescent center, form an interconnected network. Finally, we argue that a growing body of evidence indicates that vacuolar structures cannot originate from MVBs alone but receive membrane material from different sources simultaneously.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From the archives: On abiotic stress signaling: An ON/OFF switch for the heat stress response in wheat, connecting gibberellin signaling and salt stress, and calcium homeostasis and stress sensitivity. 来自档案:非生物胁迫信号:小麦热胁迫反应的开关、赤霉素信号传导与盐胁迫的联系、钙稳态与胁迫敏感性。
The Plant Cell Pub Date : 2024-09-20 DOI: 10.1093/plcell/koae258
Leiyun Yang
{"title":"From the archives: On abiotic stress signaling: An ON/OFF switch for the heat stress response in wheat, connecting gibberellin signaling and salt stress, and calcium homeostasis and stress sensitivity.","authors":"Leiyun Yang","doi":"10.1093/plcell/koae258","DOIUrl":"https://doi.org/10.1093/plcell/koae258","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From histone acetylation to abundance: The role of GCN5-CAMTA2 interaction in wheat grain weight. 从组蛋白乙酰化到丰度:GCN5-CAMTA2 相互作用在小麦粒重中的作用。
The Plant Cell Pub Date : 2024-09-20 DOI: 10.1093/plcell/koae257
Regina Mencia
{"title":"From histone acetylation to abundance: The role of GCN5-CAMTA2 interaction in wheat grain weight.","authors":"Regina Mencia","doi":"10.1093/plcell/koae257","DOIUrl":"https://doi.org/10.1093/plcell/koae257","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing red: Light and temperature-dependent complex formation reveal new insights into phytochrome activity. 看见红色:与光和温度有关的复合物形成揭示了植物色素活性的新见解。
The Plant Cell Pub Date : 2024-09-20 DOI: 10.1093/plcell/koae255
Rory Osborne
{"title":"Seeing red: Light and temperature-dependent complex formation reveal new insights into phytochrome activity.","authors":"Rory Osborne","doi":"10.1093/plcell/koae255","DOIUrl":"https://doi.org/10.1093/plcell/koae255","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信