The Plant Cell最新文献

筛选
英文 中文
Root expansion microscopy: A robust method for super resolution imaging in Arabidopsis 根扩展显微镜:拟南芥超分辨率成像的可靠方法
The Plant Cell Pub Date : 2025-04-10 DOI: 10.1093/plcell/koaf050
Magali S Grison, Guillaume Maucort, Amandine Dumazel, Dorian Champelovier, Yutaro Shimizu, Yohann Boutté, Mónica Fernández-Monreal, Emmanuelle M Bayer
{"title":"Root expansion microscopy: A robust method for super resolution imaging in Arabidopsis","authors":"Magali S Grison, Guillaume Maucort, Amandine Dumazel, Dorian Champelovier, Yutaro Shimizu, Yohann Boutté, Mónica Fernández-Monreal, Emmanuelle M Bayer","doi":"10.1093/plcell/koaf050","DOIUrl":"https://doi.org/10.1093/plcell/koaf050","url":null,"abstract":"Expansion microscopy (ExM) has revolutionized biological imaging by physically enlarging samples, surpassing the light diffraction limit, and enabling nanoscale visualization using standard microscopes. While extensively employed across a wide range of biological samples, its application to plant tissues is sparse. In this work, we present ROOT-ExM, an expansion method suited for stiff and intricate multicellular plant tissues, focusing on the primary root of Arabidopsis (Arabidopsis thaliana). ROOT-ExM achieves isotropic expansion with a 4-fold increase in resolution, enabling super-resolution microscopy comparable to stimulated emission depletion (STED) microscopy. Labeling is achieved through immunolocalization, compartment-specific dyes, and native fluorescence preservation, while N-hydroxysuccinimide ester-dye conjugates reveal the ultrastructural context of cells alongside specific labeling. We successfully applied ROOT-ExM to image various organelles and subcellular compartments, including the Golgi apparatus, the endoplasmic reticulum, the cytoskeleton, and tiny wall-embedded structures such as plasmodesmata. Combination of ROOT-ExM with STED enabled reaching an unprecedented resolution of plasmodesmata by light microscopy. When combined with lattice light sheet microscopy, ROOT-ExM enabled 3D quantitative analysis of nanoscale cellular processes, such as the size quantification of vesicles near the cell plate during cell division. Achieving super-resolution fluorescence imaging in plant biology remains a formidable challenge. Our findings underscore that ROOT-ExM provides a remarkable, cost-effective solution to this challenge, paving the way for valuable insights into plant subcellular architecture.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The circular RNA circANK suppresses rice resistance to bacterial blight by inhibiting microRNA398b-mediated defense 环状RNA circANK通过抑制microrna398b介导的防御来抑制水稻对细菌性枯萎病的抗性
The Plant Cell Pub Date : 2025-04-09 DOI: 10.1093/plcell/koaf082
Xiaohui Liu, Peihong Wang, Sai Wang, Weixue Liao, Mingyan Ouyang, Sisi Lin, Rongpeng Lin, Panagiotis F Sarris, Vasiliki Michalopoulou, Xurui Feng, Zinan Zhang, Zhengyin Xu, Gongyou Chen, Bo Zhu
{"title":"The circular RNA circANK suppresses rice resistance to bacterial blight by inhibiting microRNA398b-mediated defense","authors":"Xiaohui Liu, Peihong Wang, Sai Wang, Weixue Liao, Mingyan Ouyang, Sisi Lin, Rongpeng Lin, Panagiotis F Sarris, Vasiliki Michalopoulou, Xurui Feng, Zinan Zhang, Zhengyin Xu, Gongyou Chen, Bo Zhu","doi":"10.1093/plcell/koaf082","DOIUrl":"https://doi.org/10.1093/plcell/koaf082","url":null,"abstract":"Circular RNAs (circRNAs) are prevalent in eukaryotic cells and have been linked to disease progressions. Their unique circular structure and stability make them potential biomarkers and therapeutic targets. Compared to animal models, plant circRNA research is still in its infancy. The lack of effective tools to specifically knock down circRNAs without affecting host gene expression has slowed the progress of plant circRNA research. Here, we have developed a CRISPR-Cas13d tool that can specifically knock down circRNAs in plant systems, successfully achieving the targeted knockdown of circRNAs in rice (Oryza sativa). We further focused on Os-circANK (a circRNA derived from Ankyrin repeat-containing protein), a circRNA differentially expressed in rice upon pathogen infection. Physiological and biochemical experiments revealed that Os-circANK functions as a sponge for miR398b, suppressing the cleavage of Cu/Zn-Superoxidase Dismutase (CSD)1/CSD2/Copper Chaperone for Superoxide Dismutase (CCSD)/Superoxidase Dismutase (SODX) through ceRNA (competing endogenous RNA), leading to reduced ROS levels following Xanthomonas oryzae pv. oryzae (Xoo) infection and a negative regulation of rice resistance to bacterial blight. Our findings indicate Os-circANK inhibits rice resistance to bacterial blight via the microRNA398b(miR398b)/CSD/SOD pathway.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants 一个全面的一体化CRISPR工具箱,用于植物的大规模筛选
The Plant Cell Pub Date : 2025-04-09 DOI: 10.1093/plcell/koaf081
Yanhao Cheng, Gen Li, Aileen Qi, Rushil Mandlik, Changtian Pan, Doris Wang, Sophia Ge, Yiping Qi
{"title":"A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants","authors":"Yanhao Cheng, Gen Li, Aileen Qi, Rushil Mandlik, Changtian Pan, Doris Wang, Sophia Ge, Yiping Qi","doi":"10.1093/plcell/koaf081","DOIUrl":"https://doi.org/10.1093/plcell/koaf081","url":null,"abstract":"Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease (Cas) technologies facilitate routine genome engineering of one or a few genes at a time. However, large-scale CRISPR screens with guide RNA libraries remain challenging in plants. Here, we have developed a comprehensive all-in-one CRISPR toolbox for Cas9-based genome editing, cytosine base editing (CBE), adenine base editing (ABE), Cas12a-based genome editing and ABE, and CRISPR-Act3.0-based gene activation in both monocot and dicot plants. We evaluated all-in-one T-DNA expression vectors in rice (Oryza sativa, monocot) and tomato (Solanum lycopersicum, dicot) protoplasts, demonstrating their broad and reliable applicability. To showcase the applications of these vectors in CRISPR screens, we constructed single guide RNA (sgRNA) pools for testing in rice protoplasts, establishing a high-throughput approach to select high-activity sgRNAs. Additionally, we demonstrated the efficacy of sgRNA library screening for targeted mutagenesis of ACETOLACTATE SYNTHASE in rice, recovering novel candidate alleles for herbicide resistance. Furthermore, we carried out a CRISPR activation screen in Arabidopsis thaliana, rapidly identifying potent sgRNAs for FLOWERING LOCUS T activation that confer an early flowering phenotype. This toolbox contains 61 versatile all-in-one vectors encompassing nearly all commonly used CRISPR technologies. It will facilitate large-scale genetic screens for loss-of-function or gain-of-function studies, presenting numerous promising applications in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"181 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZmSSRP1 facilitates the progression of RNA polymerase II and is essential for kernel development in maize ZmSSRP1促进RNA聚合酶II的进展,对玉米籽粒发育至关重要
The Plant Cell Pub Date : 2025-03-31 DOI: 10.1093/plcell/koaf071
Jin-Yu Wang, Qi Wang, Ye-Xiang Peng, Lu-Guang Jiang, Zi-Zheng Lu, Lei-Ming Zheng, Xiao-Han Li, Juan Liu, Jin-Cheng Long, Jing-Han Liu, Yan He
{"title":"ZmSSRP1 facilitates the progression of RNA polymerase II and is essential for kernel development in maize","authors":"Jin-Yu Wang, Qi Wang, Ye-Xiang Peng, Lu-Guang Jiang, Zi-Zheng Lu, Lei-Ming Zheng, Xiao-Han Li, Juan Liu, Jin-Cheng Long, Jing-Han Liu, Yan He","doi":"10.1093/plcell/koaf071","DOIUrl":"https://doi.org/10.1093/plcell/koaf071","url":null,"abstract":"Transcript elongation controlled by RNA polymerase II (RNAP II) represents a key regulatory event in numerous cellular processes. However, the precise mechanisms underlying the regulation of RNAP II distribution and progression in plants remain largely elusive. Here, we positionally cloned the causal mutation in the defective kernel 59 (dek59) maize (Zea mays) mutant and demonstrated that Dek59 encodes Structure-Specific Recognition-Protein 1 (ZmSSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex that regulates RNAP II. Using genome-wide mapping assays, we determined that ZmSSRP1 binding sites co-localize with those of RNAP II phosphorylated at its serine 2 residue (Ser2P) and are highly enriched within actively transcribed genes. Mutation of ZmSSRP1 resulted in Ser2P accumulation around the +1 nucleosome of genes, affecting gene expression in a gene length-dependent manner. The reduced amount of RNAP II in the dek59 mutant was rescued to wild-type-like levels by inhibiting the proteasome, indicating that arrested RNAP II degradation is proteasome-dependent. These findings reveal the indispensable role of ZmSSRP1 in regulating RNAP II-mediated transcription, which is critical for the proper expression of thousands of genes during maize seed development.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The kinesin motor POS3 and the microtubule polymerase MOR1 coordinate chromosome congression during mitosis in Arabidopsis 拟南芥有丝分裂过程中,运动蛋白POS3和微管聚合酶MOR1协调染色体会议
The Plant Cell Pub Date : 2025-03-17 DOI: 10.1093/plcell/koaf053
Yu Chen, Haofeng Liu, Yuanfeng Li, Xiao Shen, Shuting Li, Lan Yang, Xue An, Pei Lei, Xiaomin Wang, Hongchang Zhang, Jen Sheen, Fei Yu, Xiayan Liu
{"title":"The kinesin motor POS3 and the microtubule polymerase MOR1 coordinate chromosome congression during mitosis in Arabidopsis","authors":"Yu Chen, Haofeng Liu, Yuanfeng Li, Xiao Shen, Shuting Li, Lan Yang, Xue An, Pei Lei, Xiaomin Wang, Hongchang Zhang, Jen Sheen, Fei Yu, Xiayan Liu","doi":"10.1093/plcell/koaf053","DOIUrl":"https://doi.org/10.1093/plcell/koaf053","url":null,"abstract":"Faithful chromosome segregation during mitosis is crucial for eukaryotic organisms. Centromere-associated protein E (CENP-E), a kinetochore-localized kinesin motor, facilitates chromosome congression during mitosis in animals. However, it remains unclear whether plants rely on kinesins similar to CENP-E for chromosome alignment. In our genetic screens for Arabidopsis (Arabidopsis thaliana) mutants that are hypersensitive to the microtubule-destabilizing drug propyzamide, we identified propyzamide oversensitive3-1 (pos3-1), which harbors a mutation in a kinesin-like protein that shares sequence similarity with the N-terminal region of CENP-E. We demonstrated that POS3 dynamically associates with kinetochores during chromosome congression and segregation in mitosis. Moreover, loss of POS3 results in prolonged mitosis, increased aneuploidy, and misaligned chromosomes near the spindle poles. Unexpectedly, we discovered a direct physical interaction and functional link between POS3 and the microtubule polymerase MICROTUBULE ORGANIZATION1 (MOR1) in regulating chromosome alignment and segregation during mitosis. Finally, we showed that MOR1 is required for the kinetochore localization of POS3 in mitosis. Together, our findings establish the vital role of POS3 in chromosome congression and uncover a functional link between POS3 and MOR1 that is essential for proper chromosome alignment and segregation in plant mitosis.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143641104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexome profiling of the Chlamydomonas psb28 mutant reveals TEF5 as an early photosystem II assembly factor 衣藻psb28突变体的复杂体分析显示TEF5是早期光系统II组装因子
The Plant Cell Pub Date : 2025-03-17 DOI: 10.1093/plcell/koaf055
Julia Lang, Katharina König, Benedikt Venn, Saskia Zeilfelder, Matthias Ostermeier, Benjamin Spaniol, Lara Spaniol, Frederik Sommer, Matthieu Mustas, Stefan Geimer, Torben Fürtges, Pawel Brzezowski, Jure Zabret, Francis-André Wollman, Marc M Nowacyzk, David Scheuring, Till Rudack, Timo Mühlhaus, Yves Choquet, Michael Schroda
{"title":"Complexome profiling of the Chlamydomonas psb28 mutant reveals TEF5 as an early photosystem II assembly factor","authors":"Julia Lang, Katharina König, Benedikt Venn, Saskia Zeilfelder, Matthias Ostermeier, Benjamin Spaniol, Lara Spaniol, Frederik Sommer, Matthieu Mustas, Stefan Geimer, Torben Fürtges, Pawel Brzezowski, Jure Zabret, Francis-André Wollman, Marc M Nowacyzk, David Scheuring, Till Rudack, Timo Mühlhaus, Yves Choquet, Michael Schroda","doi":"10.1093/plcell/koaf055","DOIUrl":"https://doi.org/10.1093/plcell/koaf055","url":null,"abstract":"Photosystem (PS) II assembly requires auxiliary factors, including Psb28. Although the absence of Psb28 in cyanobacteria has little effect on PSII assembly, we show here that the Chlamydomonas (Chlamydomonas reinhardtii) psb28 null mutant is severely impaired in PSII assembly, showing drastically reduced PSII supercomplexes, dimers and monomers, while overaccumulating early PSII assembly intermediates reaction center II (RCII), CP43mod and D1mod. The mutant had less PSI and more cytochrome b6f complex, its thylakoids were organized mainly as monolayers and it had a distorted chloroplast morphology. Complexome profiling of the psb28 mutant revealed that THYLAKOID ENRICHED FRACTION 5 (TEF5), the homolog of Arabidopsis (Arabidopsis thaliana) PHOTOSYSTEM B PROTEIN 33 (PSB33)/LIGHT HARVESTING-LIKE 8 (LIL8), co-migrated particularly with RCII. TEF5 also interacted with PSI. A Chlamydomonas tef5 null mutant was severely impaired in PSII assembly and overaccumulated RCII and CP43mod. RC47 was not detectable in the light-grown tef5 mutant. Our data suggest a possible role for TEF5 in RCII photoprotection or maturation. Both the psb28 and tef5 mutants exhibited decreased synthesis of CP47 and PsbH, suggesting negative feedback regulation possibly exerted by the accumulation of RCII and/or CP43mod in both mutants. The strong effects of missing auxiliary factors on PSII assembly in Chlamydomonas suggest a more effective protein quality control system in this alga than in land plants and cyanobacteria.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143641106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel repetitive elements in plant-specific tails of Gγ proteins as the functional unit in G-protein signalling in crops 植物特异性 Gγ 蛋白尾部的新重复元件是农作物 G 蛋白信号的功能单元
The Plant Cell Pub Date : 2025-03-15 DOI: 10.1093/plcell/koaf052
Shengyuan Sun, Jinliang Cheng, Yiwen Zhang, Yifei Wang, Lei Wang, Tian Wang, Zhengji Wang, Xu Li, Yong Zhou, Xianghua Li, Jinghua Xiao, Changjie Yan, Qifa Zhang, Yidan Ouyang
{"title":"Novel repetitive elements in plant-specific tails of Gγ proteins as the functional unit in G-protein signalling in crops","authors":"Shengyuan Sun, Jinliang Cheng, Yiwen Zhang, Yifei Wang, Lei Wang, Tian Wang, Zhengji Wang, Xu Li, Yong Zhou, Xianghua Li, Jinghua Xiao, Changjie Yan, Qifa Zhang, Yidan Ouyang","doi":"10.1093/plcell/koaf052","DOIUrl":"https://doi.org/10.1093/plcell/koaf052","url":null,"abstract":"Heterotrimeric G proteins act as molecular switches in signal transduction in response to stimuli in all eukaryotes. However, what specifies G protein signalling in plants and how the mechanism evolved and diverged remain unsolved. Here, we found that the recently evolved tails of three Gγ subunits, Dense and erect panicle 1 (DEP1), G protein gamma subunit 2 of type C (GGC2), and Grain size 3 (GS3), determine their distinct functions and specify grain size in rice (Oryza sativa L.). These Gγ subunits originated and expanded by an ancestral σ duplication ∼130 million years ago (mya) and a pancereal ρ duplication ∼70 mya in monocots, increasing genome complexity and inspiring functional innovations. In particular, through the comprehensive creation of artificial chimeric Gγ proteins, we found that this signalling selectivity is driven by repetitive elements and a link region hidden in plant-specific Gγ tails, allowing crops to switch from positive regulation to negative control. Unlike the tails, the conserved Gγ heads did not bias the signalling specificity; however, the change in the interaction between the mutated Gβ and Gγ affected the subsequent downstream signal transduction and grain size. Manipulating G protein signalling also affects organ size in maize (Zea mays) and is expected to constitute a general mechanism for crop improvement. Collectively, these findings reveal that plant-specific Gγ tails drive signaling selectivity and serve as valuable targets for optimizing crop traits through G protein manipulation.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncoding RNAs as Tools for Advancing Translational Biology in Plants 非编码rna作为推进植物翻译生物学的工具
The Plant Cell Pub Date : 2025-03-14 DOI: 10.1093/plcell/koaf054
Carolina Attallah, Gabriela Conti, Federico Zuljan, Diego Zavallo, Federico Ariel
{"title":"Noncoding RNAs as Tools for Advancing Translational Biology in Plants","authors":"Carolina Attallah, Gabriela Conti, Federico Zuljan, Diego Zavallo, Federico Ariel","doi":"10.1093/plcell/koaf054","DOIUrl":"https://doi.org/10.1093/plcell/koaf054","url":null,"abstract":"Noncoding RNAs (ncRNAs), once considered the \"dark matter\" of the genome, have emerged as critical regulators of gene expression in plants. Research initially focused on model organisms has laid the groundwork for harnessing the potential of ncRNAs in agriculture, particularly for crop protection, improvement and modulation. This review explores the role of long and small ncRNAs in plant biology, highlighting their application as powerful tools in agricultural biotechnology. We examine the latest strategies for ncRNA expression and delivery in crops, including transgenic and non-transgenic approaches, as well as emerging technologies that enable precise and efficient modulation of gene activity in plants and pathogens. Additionally, we provide a comprehensive overview of the current state-of-the-art in the regulation of RNA-based products, addressing the challenges and opportunities for integrating these innovations into sustainable agricultural practices. As the regulatory landscape evolves, understanding the safety, efficacy, and environmental impact of ncRNA-based technologies will be crucial for their successful deployment. By leveraging the advances in plant science research, long and small ncRNAs hold promise for designing highly specific tools to boost crop productivity while preserving genetic diversity, contributing to global food security and sustainable agriculture.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"92 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The psbA ORF acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants psbA ORF 在植物光调 psbA 翻译中顺式作用于 HCF173,使其从激活剂变为抑制剂
The Plant Cell Pub Date : 2025-03-11 DOI: 10.1093/plcell/koaf047
Rosalind Williams-Carrier, Prakitchai Chotewutmontri, Sarah Perkel, Margarita Rojas, Susan Belcher, Alice Barkan
{"title":"The psbA ORF acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants","authors":"Rosalind Williams-Carrier, Prakitchai Chotewutmontri, Sarah Perkel, Margarita Rojas, Susan Belcher, Alice Barkan","doi":"10.1093/plcell/koaf047","DOIUrl":"https://doi.org/10.1093/plcell/koaf047","url":null,"abstract":"The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1. The underlying mechanisms are unknown. Analyses of reporter constructs in transplastomic tobacco showed that the psbA translational activator HCF173 activates via a cis-element in the psbA 5'-UTR. However, the psbA UTRs are not sufficient to program light-regulated translation. Instead, the psbA open reading frame represses translation initiation in cis, and D1 photodamage relieves this repression. HCF173 remains bound to the psbA 5'-UTR in the dark and truncation of HCF173 prevents repression in the dark, implicating HCF173 as a mediator of repression. We propose a model that accounts for these and prior observations, which is informed by structures of the Complex I assembly factor CIA30/NDUFAF1. We posit that D1 photodamage relieves a repressive cotranslational interaction between nascent D1 and HCF173's CIA30 domain, that the photosystem II assembly factor HCF136 promotes this repressive interaction, and that these events toggle HCF173 between activating and repressive conformations on psbA mRNA. These findings elucidate a translational rheostat that optimizes photosynthesis in response to shifting light conditions.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-inactive CC-type glutaredoxins interfere with TGA transcription factor–dependent repression of target promoters in roots 氧化还原不活跃的cc型glutaredoxins干扰TGA转录因子依赖的靶启动子在根中的抑制
The Plant Cell Pub Date : 2025-03-07 DOI: 10.1093/plcell/koaf038
Corinna Thurow, Anja Maren Pelizaeus, Pascal Mrozek, Ben Moritz Hoßbach, Jelena Budimir, Kerstin Schmitt, Oliver Valerius, Gerhard Braus, Christiane Gatz
{"title":"Redox-inactive CC-type glutaredoxins interfere with TGA transcription factor–dependent repression of target promoters in roots","authors":"Corinna Thurow, Anja Maren Pelizaeus, Pascal Mrozek, Ben Moritz Hoßbach, Jelena Budimir, Kerstin Schmitt, Oliver Valerius, Gerhard Braus, Christiane Gatz","doi":"10.1093/plcell/koaf038","DOIUrl":"https://doi.org/10.1093/plcell/koaf038","url":null,"abstract":"Changes in nitrogen (N) availability in the soil trigger transcriptional responses in plants to optimize N acquisition, allocation, and remobilization. In roots of N-starved Arabidopsis (Arabidopsis thaliana) plants, transcriptional activation of genes encoding, for example, low-affinity nitrate transporters, depends on 4 related C-TERMINALLY ENCODED PEPTIDE DOWNSTREAM (CEPD) proteins, also known as ROXY6, ROXY7, ROXY8, and ROXY9. All 21 ROXYs found in A. thaliana interact with members of the TGACG-binding (TGA) family of transcription factors. Here, we demonstrate that 2 Clade I TGAs (TGA1, TGA4) serve as molecular links between CEPDs and their target promoters in roots. In the roxy6 roxy7 roxy8 roxy9 quadruple mutant (named cepd in this manuscript), transcriptional activation of N-starvation-inducible genes is impaired, most likely due to the association of Clade I TGAs with a repressive complex at their target promoters. In wild-type plants, this repressive complex is nonfunctional, and gene expression may be regulated by the N supply-regulated ratio of CEPDs over opposing ROXYs containing the TOPLESS-interacting ALWL motif. Although CEPDs resemble glutaredoxins with glutathione-dependent oxidoreductase activity, a ROXY9 variant with a mutation in the catalytic cysteine in its putative active site can confer wild-type-like regulation of target genes. This finding demonstrates that ROXY9 does not function through redox-dependent mechanisms.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信